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Spoofax Language Workbench



Syntax Definition in Spoofax

Many syntactic (editor) services from single declarative syntax definition

lexical syntax

ID = [a-zA-Z][a-zA-Z0-9]*

context-free syntax

Exp.Var = <<ID>>

Exp.Add = <<Exp> + <Exp>> {left}

Exp.Mul = <<Exp> * <Exp>> {left}

context-free priorities

Exp.Mul > Exp.Add

I syntax checking

I error recovery

I syntax highlighting

I abstract syntax

I formatting

I syntactic completion

I parenthesis insertion

I declarative disambiguation



History

1997 My PhD thesis with semantics of disambiguation rules for SDF2

2011 Peter Mosses observes unsafety of SDF2 rules

2013 Afroozeh et al. (SLE’13) define safe disambiguation with grammar
transformation; semantics in terms of derivations; no proof of correctness

2018 First submission to TOPLAS and implementation of new parser generator for
SDF3 integrated in Spoofax

2019 Chapter in PhD thesis Eduardo Amorim and major revision for TOPLAS: safe and
complete semantics based on subtree exclusion with proof (sketch)

2020 Work in progres: TOPLAS ’minor’ revision with new approach to proof of safety
and completeness



Order of Operations

((a ∗ b) + c)/d

(a ∗ (b + c))/d

a ∗ b + c/d (a ∗ b) + (c/d)

a ∗ ((b + c)/d)

a ∗ (b + (c/d))

read as?

read as?

read as?

read as?

read as?
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Order of Operations

a + b ∗ c

(a + b) ∗ c a + (b ∗ c)

read as? read as?

a− b + c

(a− b) + c a− (b + c)

read as? read as?



Associativity and Priority

a + b ∗ c ∗ > +

(a + b) ∗ c a + (b ∗ c)

read as

a− b + c + left−

(a− b) + c a− (b + c)

read as



Order of Operations

(a + (λx. b)) + c λ > +,+ left +

a + λx. b + c a + (λx. (b + c)) λ ? +,+ ? +

a + ((λx. b) + c) λ > +,+ right +

read as?

read as?

read as?



Semantics of Associativity and Priority

In this talk:

I What is the semantics of associativity and priority rules?

I Is a set of disambiguation rules safe?

I Is a set of disambiguation rules complete?

I How to prove that?

Not in this talk:

I What classes of ambiguities do associativity and priority rules solve?

I What is an effective implementation strategy for disambiguation rules?

Why is this not a solved problem?

I Ambiguity of context-free grammars is undecidable; why bother?

I Existing definitions depend on specific implementations
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Ambiguous Sentence has Multiple Parse Trees
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Associativity and Priority as Subtree Exclusion Rules [SDF2 (1997)]

A.C1 > A.C2
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A.C1 left A.C2
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A.C1 right A.C2

C1

C2

β

γ

Disambiguation rules generate subtree exclusion patterns (aka conflict patterns)
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Disambiguation by Subtree Exclusion
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Safe for High Priority Prefix Operators

E .Min > E .Add
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Unsafe for Low Priority Prefix Operators [SDF2]

E .Add > E .Lam
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Safe Subtree Exclusion Rules [SDF3 (2019)]

A.C1 > A.C2
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α A
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(not a pattern)



Shallow Interpretation: Safe for Low Priority Prefix Operators
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Shallow Interpretation: Incomplete for Low Priority Prefix Operators
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Deep Priority Conflicts: Match Subpattern in Right-Most Subtree
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Semantics of Associativity and Priority

X What is the semantics of associativity and priority rules?
I Integrated in implementation of SDF3 parser generator
I Has been available since 2018 in Spoofax

I Is a set of disambiguation rules safe for a particular grammar?

I Is a set of disambiguation rules complete for a particular grammar?

I How to prove that?

Restricting to the case of infix expression grammars for this talk.



Safe and Complete Disambiguation Rules
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Unsafe: Too Many Disambiguation Rules
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Incomplete: Too Few Disambiguation Rules
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Semantics of Associativity and Priority

X What is the semantics of associativity and priority rules?

X Is a set of disambiguation rules safe for a particular grammar?
I At most one rule for each pair of productions
I + some well-formedness criteria

X Is a set of disambiguation rules complete for a particular grammar?
I At least one rule for each pair of productions
I + some well-formedness criteria

I How to prove that?



Trees under Subtree Exclusion

Definition
A tree t ∈ TQ(G ) iff t ∈ T (G ) and no subtree of t matches a conflict pattern in Q.

Lemma (Safety)

A disambiguation relation is safe, if for each w ∈ L(G ) there is at least one tree
t ∈ TQ(G ) such that yield(t) = w.

Lemma (Completeness)

A disambiguation relation is complete, if for each w ∈ L(G ) there is at most one tree
t ∈ TQ(G ) such that yield(t) = w.



Essence of the Proof Attempt

To prove safety:

If a tree t ∈ T (G ) has a conflict, then there is another tree for the same sentence that
does not have a conflict.

To prove completeness:

If a tree t ∈ T (G ) does not have a conflict, then all other trees for the same sentence
have conflicts.

Subtree exclusion is a statement about a single tree

How do we relate all trees for the same sentence?

The solution is simple and elegant; once you have seen it you can’t unsee it; but for
the longest time I didn’t see it (nor did co-authors, reviewers, other readers)∗.
∗ But Haskell infix operators are implemented using such reorderings
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Insight: Trees for Ambiguous Sentence are Reorderings
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Reordering Rewrite System
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C2

t21 op2 t22

op1 t12
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Theorem: Infix Ambiguities are Reorderings

w

t1 . . . ti . . . tn

yield
yield

yield

RI RI RI RI

Fine print: for expression grammars beyond infix expression grammars, there are some extra
requirements.



Ordering Reorderings with Conflict Patterns
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Correspondence: Unsafety is Non-Termination
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Correspondence: Incompleteness is Non-Confluence (Non-Church Rosser)
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Correspondence: Safety + Completeness is Termination + Confluence
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Proving Termination and Completeness

I Termination = Safety
I A safe disambiguation relation induces a reduction order on DI
I Roughly: number of conflicts reduces to zero

I Confluence = Completeness
I If disambiguation relation is complete, then DI is locally confluent
I DI (infix) has 5 critical pairs
I The conditions for the rules in a critical pair + well-formedness criteria on

disambiguation relation enable other rules and completion of the diagram
I Extension with prefix and postfix operators: 8 rules, 28 critical pairs, 36 cases.
I Automated by implementation in Stratego



Proving Local Confluence: Critical Pairs are Joinable

(op11 > op22 ∧ op22 > op32 ⇒ op11 > op32)

∨ (op11 > op22 ∧ op22 left op32 ⇒ op11 > op32)

∨ (op11 right op22 ∧ op22 > op32 ⇒ op11 > op32)

∨ (op11 right op22 ∧ op22 left op32 ⇒ false)



Semantics of Associativity and Priority

X What is the semantics of associativity and priority rules?

X Is a set of disambiguation rules safe for a particular grammar?
I At most one rule for each pair of productions
I + some well-formedness criteria

X Is a set of disambiguation rules complete for a particular grammar?
I At least one rule for each pair of productions
I + some well-formedness criteria

X How to prove that?
I Disambiguation corresponds to reordering conditional on conflict patterns
I Trees under subtree exclusion: normal forms of DI
I Safety of disambiguation

I DI is terminating iff disambiguation relation is safe

I Completeness of disambiguation
I DI is confluent iff disambiguation relation is complete



What Else?
I What clasess of ambiguities do associativity rules solve?

I Short answer: expression grammars for which ambiguities correspond to reorderings
I We have investigated several classes of expression grammars: prefix/postfix

operators, mixfix grammars, dangling suffix/prefix, indirect recursion, longest match
of lists

I What happened to the undecidability of ambiguity?
I Expression grammars without overlap: ambiguities are reorderings
I Infix grammars: cannot have overlap
I IPP grammars: harmful overlap is decidable (conjecture)
I Mixfix grammars: harmful/less overlap undecidable in general
I But: need only inspect productions involved in overlap

I What is an effective implementation strategy for disambiguation rules?
I Contextual grammar transformations
I Data dependent parsing

I A full paper is underway
I A Direct Semantics for Declarative Disambiguation of Expression Grammars
I Under revision for ACM TOPLAS
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