
Safety and Completeness of Disambiguation corresponds to
Termination and Confluence of Reordering

Eelco Visser

Joint work with Eduardo Amorim

June 30, 2020
International Workshop on Confluence (IWC’20)

Co-located with FSCD and IJCAR
‘Paris, France’



Spoofax Language Workbench



Syntax Definition in Spoofax

Many syntactic (editor) services from single declarative syntax definition

lexical syntax

ID = [a-zA-Z][a-zA-Z0-9]*

context-free syntax

Exp.Var = <<ID>>

Exp.Add = <<Exp> + <Exp>> {left}

Exp.Mul = <<Exp> * <Exp>> {left}

context-free priorities

Exp.Mul > Exp.Add

I syntax checking

I error recovery

I syntax highlighting

I abstract syntax

I formatting

I syntactic completion

I parenthesis insertion

I declarative disambiguation



History

1997 My PhD thesis with semantics of disambiguation rules for SDF2

2011 Peter Mosses observes unsafety of SDF2 rules

2013 Afroozeh et al. (SLE’13) define safe disambiguation with grammar
transformation; semantics in terms of derivations; no proof of correctness

2018 First submission to TOPLAS and implementation of new parser generator for
SDF3 integrated in Spoofax

2019 Chapter in PhD thesis Eduardo Amorim and major revision for TOPLAS: safe and
complete semantics based on subtree exclusion with proof (sketch)

2020 Work in progres: TOPLAS ’minor’ revision with new approach to proof of safety
and completeness



Order of Operations

((a ∗ b) + c)/d

(a ∗ (b + c))/d

a ∗ b + c/d (a ∗ b) + (c/d)

a ∗ ((b + c)/d)

a ∗ (b + (c/d))

read as?

read as?

read as?

read as?

read as?



Order of Operations

((a ∗ b) + c)/d

(a ∗ (b + c))/d

a ∗ b + c/d (a ∗ b) + (c/d)

a ∗ ((b + c)/d)

a ∗ (b + (c/d))

read as?

read as?

read as?

read as?

read as?



Order of Operations

a + b ∗ c

(a + b) ∗ c a + (b ∗ c)

read as? read as?

a− b + c

(a− b) + c a− (b + c)

read as? read as?



Associativity and Priority

a + b ∗ c ∗ > +

(a + b) ∗ c a + (b ∗ c)

read as

a− b + c + left−

(a− b) + c a− (b + c)

read as



Order of Operations

(a + (λx. b)) + c λ > +,+ left +

a + λx. b + c a + (λx. (b + c)) λ ? +,+ ? +

a + ((λx. b) + c) λ > +,+ right +

read as?

read as?

read as?



Semantics of Associativity and Priority

In this talk:

I What is the semantics of associativity and priority rules?

I Is a set of disambiguation rules safe?

I Is a set of disambiguation rules complete?

I How to prove that?

Not in this talk:

I What classes of ambiguities do associativity and priority rules solve?

I What is an effective implementation strategy for disambiguation rules?

Why is this not a solved problem?

I Ambiguity of context-free grammars is undecidable; why bother?

I Existing definitions depend on specific implementations



Semantics of Associativity and Priority

In this talk:

I What is the semantics of associativity and priority rules?

I Is a set of disambiguation rules safe?

I Is a set of disambiguation rules complete?

I How to prove that?

Not in this talk:

I What classes of ambiguities do associativity and priority rules solve?

I What is an effective implementation strategy for disambiguation rules?

Why is this not a solved problem?

I Ambiguity of context-free grammars is undecidable; why bother?

I Existing definitions depend on specific implementations



Semantics of Associativity and Priority

In this talk:

I What is the semantics of associativity and priority rules?

I Is a set of disambiguation rules safe?

I Is a set of disambiguation rules complete?

I How to prove that?

Not in this talk:

I What classes of ambiguities do associativity and priority rules solve?

I What is an effective implementation strategy for disambiguation rules?

Why is this not a solved problem?

I Ambiguity of context-free grammars is undecidable; why bother?

I Existing definitions depend on specific implementations



Ambiguous Sentence has Multiple Parse Trees

a + b * c - d

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Add

a + Mul

b * c

- d

Min

Mul

Add

a + b

* c

- d

yield

yield yield yield

yield



Associativity and Priority as Subtree Exclusion Rules [SDF2 (1997)]

A.C1 > A.C2

C1

α C2

β

γ

A.C1 left A.C2

C1

α C2

β

A.C1 right A.C2

C1

C2

β

γ

Disambiguation rules generate subtree exclusion patterns (aka conflict patterns)

E .Mul > E .Add

Mul

Add

E + E

* E

E .Mul > E .Add

Mul

E * Add

E + E

E .Add left E .Add

Add

E + Add

E + E



Disambiguation by Subtree Exclusion

a + b * c - d

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Add

a + Mul

b * c

- d

Min

Mul

Add

a + b

* c

- d

Mul

E * Min

E - E

Add

E + Min

E - E

Mul

E * Min

E - E

Mul

Add

E + E

* E

yield

matches

yield

matches

yield

matches

yield

yield

matches



Safe for High Priority Prefix Operators

E .Min > E .Add

Min

- Add

E + E

E .Min > E .Mul

Min

- Mul

E * E

Mul

a * Min

- Add

b + c

Mul

a * Add

Min

- b

+ c

Add

Mul

a * Min

- b

+ c



Unsafe for Low Priority Prefix Operators [SDF2]

E .Add > E .Lam

Add

Lam

λ ID . E

+ E

E .Add > E .Lam

Add

E + Lam

λ ID . E

Add

a + Lam

λ x . Add

b + c

Add

a + Add

Lam

λ x . b

+ c

Add

Add

a + Lam

λ x . b

+ c



Safe Subtree Exclusion Rules [SDF3 (2019)]

A.C1 > A.C2

C1

C2

α A

β

A.C1 > A.C2

C1

α C2

A β

A.C1 left A.C2

C1

A α C2

A β A

A.C1 right A.C2

C1

C2

A α A

β A

E .Add > E .Lam

Add

Lam

λ ID . E

+ E

E .Add > E .Lam

Add

E + Lam

λ ID . E

(not a pattern)



Shallow Interpretation: Safe for Low Priority Prefix Operators

E .Add > E .Lam

Add

Lam

λ ID . E

+ E

E .Add > E .Lam

Add

E + Lam

λ ID . E

Add

a + Lam

λ x . Add

b + c

Add

a + Add

Lam

λ x . b

+ c

Add

Add

a + Lam

λ x . b

+ c



Shallow Interpretation: Incomplete for Low Priority Prefix Operators

E .Add > E .Lam

Add

Lam

λ ID . E

+ E

E .Add > E .Lam

Add

E + Lam

λ ID . E

E .Pow > E .Lam

Pow

Lam

λ ID . E

ˆ E

E .Pow > E .Lam

Pow

E ˆ Lam

λ ID . E

a * b ˆ λ x. c + d Add

Mul

a * Pow

b ˆ Lam

λx. c

+ d

Mul

a * Pow

b ˆ Lam

λx. Add

c + d



Deep Priority Conflicts: Match Subpattern in Right-Most Subtree

E .Add > E .Lam

Add

Lam

λ ID . E

+ E

E .Add > E .Lam

Add

C1

α Lam

λ ID . E

+ E

E .Add > E .Lam

Add

C1

α C2

β Lam

λ ID . E

+ E

... Add

Mul

a * Pow

b ˆ Lam

λx. c

+ d

Infinite set of conflict patterns



Semantics of Associativity and Priority

X What is the semantics of associativity and priority rules?
I Integrated in implementation of SDF3 parser generator
I Has been available since 2018 in Spoofax

I Is a set of disambiguation rules safe for a particular grammar?

I Is a set of disambiguation rules complete for a particular grammar?

I How to prove that?

Restricting to the case of infix expression grammars for this talk.



Safe and Complete Disambiguation Rules

a + b * c - d

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Add

a + Mul

b * c

- d

Min

Mul

Add

a + b

* c

- d

Mul

E * Min

E - E

Add

E + Min

E - E

Mul

E * Min

E - E

Mul

Add

E + E

* E

Mul > Min Add leftMin Mul > Min Mul > Add

matches matches
matches

matches



Unsafe: Too Many Disambiguation Rules

a + b * c - d

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Add

a + Mul

b * c

- d

Min

Mul

Add

a + b

* c

- d

Mul

E * Min

E - E

Add

E + Min

E - E

Mul

E * Min

E - E

Min

Add

E + E

- E

Mul

Add

E + E

* E

Mul > Min Add leftMin Mul > Min Add rightMin Mul > Add

matches matches
matches

matches matches



Incomplete: Too Few Disambiguation Rules

a + b * c - d

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Add

a + Mul

b * c

- d

Min

Mul

Add

a + b

* c

- d

Mul

E * Min

E - E

Add

E + Min

E - E

Mul

E * Min

E - E

Mul > Min Add leftMin Mul > Min

matches matches
matches



Semantics of Associativity and Priority

X What is the semantics of associativity and priority rules?

X Is a set of disambiguation rules safe for a particular grammar?
I At most one rule for each pair of productions
I + some well-formedness criteria

X Is a set of disambiguation rules complete for a particular grammar?
I At least one rule for each pair of productions
I + some well-formedness criteria

I How to prove that?



Trees under Subtree Exclusion

Definition
A tree t ∈ TQ(G ) iff t ∈ T (G ) and no subtree of t matches a conflict pattern in Q.

Lemma (Safety)

A disambiguation relation is safe, if for each w ∈ L(G ) there is at least one tree
t ∈ TQ(G ) such that yield(t) = w.

Lemma (Completeness)

A disambiguation relation is complete, if for each w ∈ L(G ) there is at most one tree
t ∈ TQ(G ) such that yield(t) = w.



Essence of the Proof Attempt

To prove safety:

If a tree t ∈ T (G ) has a conflict, then there is another tree for the same sentence that
does not have a conflict.

To prove completeness:

If a tree t ∈ T (G ) does not have a conflict, then all other trees for the same sentence
have conflicts.

Subtree exclusion is a statement about a single tree

How do we relate all trees for the same sentence?

The solution is simple and elegant; once you have seen it you can’t unsee it; but for
the longest time I didn’t see it (nor did co-authors, reviewers, other readers)∗.
∗ But Haskell infix operators are implemented using such reorderings



Essence of the Proof Attempt

To prove safety:

If a tree t ∈ T (G ) has a conflict, then there is another tree for the same sentence that
does not have a conflict.

To prove completeness:

If a tree t ∈ T (G ) does not have a conflict, then all other trees for the same sentence
have conflicts.

Subtree exclusion is a statement about a single tree

How do we relate all trees for the same sentence?

The solution is simple and elegant; once you have seen it you can’t unsee it; but for
the longest time I didn’t see it (nor did co-authors, reviewers, other readers)∗.
∗ But Haskell infix operators are implemented using such reorderings



Essence of the Proof Attempt

To prove safety:

If a tree t ∈ T (G ) has a conflict, then there is another tree for the same sentence that
does not have a conflict.

To prove completeness:

If a tree t ∈ T (G ) does not have a conflict, then all other trees for the same sentence
have conflicts.

Subtree exclusion is a statement about a single tree

How do we relate all trees for the same sentence?

The solution is simple and elegant; once you have seen it you can’t unsee it; but for
the longest time I didn’t see it (nor did co-authors, reviewers, other readers)∗.
∗ But Haskell infix operators are implemented using such reorderings



Essence of the Proof Attempt

To prove safety:

If a tree t ∈ T (G ) has a conflict, then there is another tree for the same sentence that
does not have a conflict.

To prove completeness:

If a tree t ∈ T (G ) does not have a conflict, then all other trees for the same sentence
have conflicts.

Subtree exclusion is a statement about a single tree

How do we relate all trees for the same sentence?

The solution is simple and elegant; once you have seen it you can’t unsee it; but for
the longest time I didn’t see it (nor did co-authors, reviewers, other readers)∗.
∗ But Haskell infix operators are implemented using such reorderings



Insight: Trees for Ambiguous Sentence are Reorderings

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

a + b * c - d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

yield

RI

RI

yield

RI

RI
yield

RI

RI

yield

RIRI

yield

RI

RI



Reordering Rewrite System

C1

C2

t21 op2 t22

op1 t12

C2

t21 op2 C1

t22 op1 t12

RI

C1

t11 op1 C2

t21 op2 t22

C2

C1

t11 op1 t21

op2 t22

RI



Theorem: Infix Ambiguities are Reorderings

w

t1 . . . ti . . . tn

yield
yield

yield

RI RI RI RI

Fine print: for expression grammars beyond infix expression grammars, there are some extra
requirements.



Ordering Reorderings with Conflict Patterns

C1

C2

t21 op2 t22

op1 t12

C2

t21 op2 C1

t22 op1 t12

if C1

C2

A op2 A

op1 A

∈ QDI

C1

t11 op1 C2

t21 op2 t22

C2

C1

t11 op1 t21

op2 t22

if C1

A op1 C2

A op2 A

∈ QRI



Correspondence: Unsafety is Non-Termination

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

Mul>Min

Add leftMinMul>Add

Mul>Min Mul>Add

Add rightMin



Correspondence: Incompleteness is Non-Confluence (Non-Church Rosser)

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

Add leftMinMul>Add

Mul>Add



Correspondence: Safety + Completeness is Termination + Confluence

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

Mul>Min

Add leftMinMul>Add

Mul>Min Mul>Add



Proving Termination and Completeness

I Termination = Safety
I A safe disambiguation relation induces a reduction order on DI
I Roughly: number of conflicts reduces to zero

I Confluence = Completeness
I If disambiguation relation is complete, then DI is locally confluent
I DI (infix) has 5 critical pairs
I The conditions for the rules in a critical pair + well-formedness criteria on

disambiguation relation enable other rules and completion of the diagram
I Extension with prefix and postfix operators: 8 rules, 28 critical pairs, 36 cases.
I Automated by implementation in Stratego



Proving Local Confluence: Critical Pairs are Joinable

(op11 > op22 ∧ op22 > op32 ⇒ op11 > op32)

∨ (op11 > op22 ∧ op22 left op32 ⇒ op11 > op32)

∨ (op11 right op22 ∧ op22 > op32 ⇒ op11 > op32)

∨ (op11 right op22 ∧ op22 left op32 ⇒ false)



Semantics of Associativity and Priority

X What is the semantics of associativity and priority rules?

X Is a set of disambiguation rules safe for a particular grammar?
I At most one rule for each pair of productions
I + some well-formedness criteria

X Is a set of disambiguation rules complete for a particular grammar?
I At least one rule for each pair of productions
I + some well-formedness criteria

X How to prove that?
I Disambiguation corresponds to reordering conditional on conflict patterns
I Trees under subtree exclusion: normal forms of DI
I Safety of disambiguation

I DI is terminating iff disambiguation relation is safe

I Completeness of disambiguation
I DI is confluent iff disambiguation relation is complete



What Else?
I What clasess of ambiguities do associativity rules solve?

I Short answer: expression grammars for which ambiguities correspond to reorderings
I We have investigated several classes of expression grammars: prefix/postfix

operators, mixfix grammars, dangling suffix/prefix, indirect recursion, longest match
of lists

I What happened to the undecidability of ambiguity?
I Expression grammars without overlap: ambiguities are reorderings
I Infix grammars: cannot have overlap
I IPP grammars: harmful overlap is decidable (conjecture)
I Mixfix grammars: harmful/less overlap undecidable in general
I But: need only inspect productions involved in overlap

I What is an effective implementation strategy for disambiguation rules?
I Contextual grammar transformations
I Data dependent parsing

I A full paper is underway
I A Direct Semantics for Declarative Disambiguation of Expression Grammars
I Under revision for ACM TOPLAS


	Introduction
	Order of Operations

