Cyrille Chenavier - Benjamin Dupont - Philippe Malbos

Institut Camille Jordan, Université Lyon 1

International Workshop on Confluence 2020

30, June 2020

I. Introduction : string and linear critical pair lemma

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- II. Algebraic polygraphs modulo
- III. Algebraic critical pair lemma

I. Introduction: string and linear critical pair lemma

▶ Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
 - Depends on the algebraic context and the nature of branchings.
 - Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
 - Depends on the algebraic context and the nature of branchings.
 - Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.

String rewriting systems (SRS)

Orthogonal

Overlappings

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
 - Depends on the algebraic context and the nature of branchings.
 - Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.

Orthogonal

Overlappings

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Proof of CBL:
 - Orthogonal are confluent,
 - Overlappings are confluent from confluence of critical branchings.

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
 - Depends on the algebraic context and the nature of branchings.
 - Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.

Orthogonal

Overlappings

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Proof of CBL:

- Orthogonal are confluent,
- Overlappings are confluent from confluence of critical branchings.
- For SRSs, orthogonal branchings are always confluent, Knuth-Bendix '70, Nivat '72.

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
 - Depends on the algebraic context and the nature of branchings.
 - Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.

Orthogonal

Overlappings

Proof of CBL:

- Orthogonal are confluent,
- Overlappings are confluent from confluence of critical branchings.
- For SRSs, orthogonal branchings are always confluent, Knuth-Bendix '70, Nivat '72.
- Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its critical branchings are confluent.

Question : How does this adapt for other algebraic structures ?

(ロ)、(型)、(E)、(E)、 E) のQ(()

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:
 - **b** To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow -v$ and

 $v = (u + v) - u \rightarrow (u + v) - v = u.$

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:
 - To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow -v$ and

$$v = (u+v) - u \rightarrow (u+v) - v = u.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Rewriting step : $\lambda f + h \rightarrow \lambda g + h$ such that $f \notin \text{Supp}(h) = \{h_i \text{ monomials } | h = \sum h_i\}$.

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:

▶ To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow -v$ and

$$v = (u+v) - u \rightarrow (u+v) - v = u.$$

• Rewriting step : $\lambda f + h \rightarrow \lambda g + h$ such that $f \notin \text{Supp}(h) = \{h_i \text{ monomials } | h = \sum h_i\}$.

Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:

▶ To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow -v$ and

$$v = (u + v) - u \rightarrow (u + v) - v = u.$$

• Rewriting step : $\lambda f + h \rightarrow \lambda g + h$ such that $f \notin \text{Supp}(h) = \{h_i \text{ monomials } | h = \sum h_i\}$.

- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.
 - It has no critical branching, and a non-confluent orthogonal branching :

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:

▶ To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow -v$ and

$$v = (u + v) - u \rightarrow (u + v) - v = u.$$

• Rewriting step : $\lambda f + h \rightarrow \lambda g + h$ such that $f \notin \text{Supp}(h) = \{h_i \text{ monomials } | h = \sum h_i\}$.

- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.
 - It has no critical branching, and a non-confluent orthogonal branching :

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:

▶ To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow -v$ and

$$v = (u + v) - u \rightarrow (u + v) - v = u.$$

• Rewriting step : $\lambda f + h \rightarrow \lambda g + h$ such that $f \notin \text{Supp}(h) = \{h_i \text{ monomials } | h = \sum h_i\}$.

Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules α : xy → xz and β : zt → 2yt.

It has no critical branching, and a non-confluent orthogonal branching :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:

b To avoid non-termination, restriction on rewriting steps: if $u \to v$, then $-u \to -v$ and

$$v = (u + v) - u \rightarrow (u + v) - v = u.$$

• Rewriting step : $\lambda f + h \rightarrow \lambda g + h$ such that $f \notin \text{Supp}(h) = \{h_i \text{ monomials } | h = \sum h_i\}$.

Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.

It has no critical branching, and a non-confluent orthogonal branching :

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud Hoffbeck Malbos '19:
 - To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow -v$ and

 $v = (u + v) - u \rightarrow (u + v) - v = u.$

- Rewriting step : $\lambda f + h \rightarrow \lambda g + h$ such that $f \notin \text{Supp}(h) = \{h_i \text{ monomials } | h = \sum h_i\}$.
- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules α : xy → xz and β : zt → 2yt.
 - It has no critical branching, and a non-confluent orthogonal branching :

CBL requires an additional termination assumption to hold.

 Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P₀, P₁, P₂) made of
 - a signature (P₀, P₁) of sorts and operations,
 - **•** a set of relations P_2 on the free 1-theory P_1^{\times} on P_1 , containing terms on operations of P_1 .

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P₀, P₁, P₂) made of
 - a signature (P₀, P₁) of sorts and operations,
 - **•** a set of relations P_2 on the free 1-theory P_1^{\times} on P_1 , containing terms on operations of P_1 .
- Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

 $(\{\bullet\}, \{\mu : 2 \to 1, e : 0 \to 1\}, \{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x.\})$

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P₀, P₁, P₂) made of
 - a signature (P₀, P₁) of sorts and operations,
 - ▶ a set of relations P_2 on the free 1-theory P_1^{\times} on P_1 , containing terms on operations of P_1 .
- Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

 $(\{\bullet\}, \{\mu : 2 \to 1, e : 0 \to 1\}, \{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x\})$

Rewriting paths are interpreted as 2-cells in the free 2-theory P[×]₂ on (P₀, P₁, P₂), and are denoted by a : a₋ ⇒ a₊.

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P₀, P₁, P₂) made of
 - a signature (P₀, P₁) of sorts and operations,
 - **•** a set of relations P_2 on the free 1-theory P_1^{\times} on P_1 , containing terms on operations of P_1 .
- Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

 $(\{\bullet\}, \{\mu : 2 \to 1, e : 0 \to 1\}, \{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x\})$

- Rewriting paths are interpreted as 2-cells in the free 2-theory P[×]₂ on (P₀, P₁, P₂), and are denoted by a : a_− ⇒ a₊.
- An algebraic polygraph is a data made of
 - a cartesian 2-polygraph P,
 - ▶ a family of generating constants $Q = (Q_s)_{s \in P_0}$, seen as operations $x : 0 \to s$,
 - a family on relations on the set $P_1(Q)$ of ground terms over $(P_0, P_1 \cup Q)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P₀, P₁, P₂) made of
 - a signature (P₀, P₁) of sorts and operations,
 - **•** a set of relations P_2 on the free 1-theory P_1^{\times} on P_1 , containing terms on operations of P_1 .
- Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

 $(\{\bullet\}, \{\mu : 2 \to 1, e : 0 \to 1\}, \{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x\})$

- Rewriting paths are interpreted as 2-cells in the free 2-theory P[×]₂ on (P₀, P₁, P₂), and are denoted by a : a₋ ⇒ a₊.
- An algebraic polygraph is a data made of
 - a cartesian 2-polygraph P,
 - ▶ a family of generating constants $Q = (Q_s)_{s \in P_0}$, seen as operations $x : 0 \to s$,
 - a family on relations on the set $P_1(Q)$ of ground terms over $(P_0, P_1 \cup Q)$.

► Example : P = Mon, $Q = \{s, t\}$ and $R = \{\alpha : \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$.

► Algebraic polygraph of axioms : (P₀, P₁⟨Q⟩, P₂⟨Q⟩) where P₂⟨Q⟩ contains the "groundified" 2-cells of P₂

► Algebraic polygraph of axioms : (P₀, P₁⟨Q⟩, P₂⟨Q⟩) where P₂⟨Q⟩ contains the "groundified" 2-cells of P₂, e.g.

 $\mu(\mu(s,t),s) \Rightarrow \mu(s,\mu(t,s)) \quad \rightsquigarrow \quad \text{associativity relation in } sts$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

► Algebraic polygraph of axioms : (P₀, P₁⟨Q⟩, P₂⟨Q⟩) where P₂⟨Q⟩ contains the "groundified" 2-cells of P₂, e.g.

 $\mu(\mu(s,t),s) \Rightarrow \mu(s,\mu(t,s)) \quad \rightsquigarrow \quad \text{associativity relation in } sts$

Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Algebraic polygraph of axioms : (P₀, P₁⟨Q⟩, P₂⟨Q⟩) where P₂⟨Q⟩ contains the "groundified" 2-cells of P₂, e.g.

 $\mu(\mu(s,t),s) \Rightarrow \mu(s,\mu(t,s)) \quad \rightsquigarrow \quad \text{associativity relation in } sts$

Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

► Algebraic polygraph of axioms : (P₀, P₁⟨Q⟩, P₂⟨Q⟩) where P₂⟨Q⟩ contains the "groundified" 2-cells of P₂, e.g.

 $\mu(\mu(s,t),s) \Rightarrow \mu(s,\mu(t,s)) \quad \rightsquigarrow \quad \text{associativity relation in } sts$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.
 - Rewriting with rules in R, but confluence modulo E, Huet '80

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Algebraic polygraph of axioms : (P₀, P₁⟨Q⟩, P₂⟨Q⟩) where P₂⟨Q⟩ contains the "groundified" 2-cells of P₂, e.g.

 $\mu(\mu(s,t),s) \Rightarrow \mu(s,\mu(t,s)) \quad \rightsquigarrow \quad \text{associativity relation in } sts$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

Rewriting with rules in R, but confluence modulo E, Huet '80

Rewriting with R on E-equivalence classes :

• Algebraic polygraph of axioms : $(P_0, P_1(Q), P_2(Q))$ where $P_2(Q)$ contains the "groundified" 2-cells of P_2 , e.g.

 $\mu(\mu(s,t),s) \Rightarrow \mu(s,\mu(t,s)) \quad \rightsquigarrow \quad \text{associativity relation in } sts$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

Rewriting with rules in R, but confluence modulo E, Huet '80

Rewriting system modulo : (R, E, S) such that $R \subseteq S \subseteq {}_{E}R_{E}$, Jouannaud-Kirchner '84.

► Algebraic polygraph of axioms : (P₀, P₁⟨Q⟩, P₂⟨Q⟩) where P₂⟨Q⟩ contains the "groundified" 2-cells of P₂, e.g.

 $\mu(\mu(s,t),s) \Rightarrow \mu(s,\mu(t,s)) \quad \rightsquigarrow \quad \text{associativity relation in } sts$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

Rewriting with rules in R, but confluence modulo E, Huet '80

- Rewriting with R on E-equivalence classes :
- Rewriting system modulo : (R, E, S) such that $R \subseteq S \subseteq {}_{E}R_{E}$, Jouannaud-Kirchner '84.

Algebraic polygraph modulo : quadruple (P, Q, R, S) where (P, Q, R) is an algebraic polygraph and S is a set of oriented relations such that

 $R \subseteq S \subseteq {}_{P_2\langle Q \rangle} R_{P_2\langle Q \rangle} := {}_P R_P.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Positivity

► Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi : P_1\langle Q \rangle \rightarrow P_1\langle Q \rangle / P_2\langle Q \rangle$ sending a ground term f on its equivalence class \overline{f} modulo $P_2\langle Q \rangle$.

Positivity

- ► Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi : P_1\langle Q \rangle \rightarrow P_1\langle Q \rangle / P_2\langle Q \rangle$ sending a ground term f on its equivalence class \overline{f} modulo $P_2\langle Q \rangle$.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by π : P₁⟨Q⟩ → P₁⟨Q⟩/P₂⟨Q⟩ sending a ground term f on its equivalence class f modulo P₂⟨Q⟩.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.

A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- ► Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi : P_1\langle Q \rangle \rightarrow P_1\langle Q \rangle / P_2\langle Q \rangle$ sending a ground term f on its equivalence class \overline{f} modulo $P_2\langle Q \rangle$.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?

- ► Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi : P_1\langle Q \rangle \rightarrow P_1\langle Q \rangle / P_2\langle Q \rangle$ sending a ground term f on its equivalence class \overline{f} modulo $P_2\langle Q \rangle$.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.
- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?
- Assume that P is such that $P_2 = P'_2 \cup P''_2$, with P'_2 confluent modulo P''_2 .
 - $\sigma(\overline{f}) = NF(f, P'_2 \mod P''_2)$, where $f \in \pi^{-1}(\overline{f})$, the set of normal forms of f for P'_2 modulo P''_2 .

- Given an algebraic polygraph modulo (P, Q, R, S), denote by π : P₁⟨Q⟩ → P₁⟨Q⟩/P₂⟨Q⟩ sending a ground term f on its equivalence class f modulo P₂⟨Q⟩.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.
- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?
- Assume that P is such that $P_2 = P'_2 \cup P''_2$, with P'_2 confluent modulo P''_2 .
 - $\sigma(\overline{f}) = NF(f, P'_2 \mod P''_2)$, where $f \in \pi^{-1}(\overline{f})$, the set of normal forms of f for P'_2 modulo P''_2 .

Example :

String rewriting systems

- Given an algebraic polygraph modulo (P, Q, R, S), denote by π : P₁⟨Q⟩ → P₁⟨Q⟩/P₂⟨Q⟩ sending a ground term f on its equivalence class f modulo P₂⟨Q⟩.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.
- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?
- Assume that P is such that $P_2 = P'_2 \cup P''_2$, with P'_2 confluent modulo P''_2 .
 - $\sigma(\overline{f}) = NF(f, P'_2 \mod P''_2)$, where $f \in \pi^{-1}(\overline{f})$, the set of normal forms of f for P'_2 modulo P''_2 .

Example :

String rewriting systems

 $P_2 = \emptyset \cup \mathsf{Ass}$

- Given an algebraic polygraph modulo (P, Q, R, S), denote by π : P₁⟨Q⟩ → P₁⟨Q⟩/P₂⟨Q⟩ sending a ground term f on its equivalence class f modulo P₂⟨Q⟩.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.
- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?
- Assume that P is such that $P_2 = P'_2 \cup P''_2$, with P'_2 confluent modulo P''_2 .

• $\sigma(\overline{f}) = NF(f, P'_2 \mod P''_2)$, where $f \in \pi^{-1}(\overline{f})$, the set of normal forms of f for P'_2 modulo P''_2 .

Example :

String rewriting systems

 $P_2 = \emptyset \cup Ass$

$$\sigma(\overline{f}) = \pi^{-1}(\overline{f})$$
(Every 2-cell is positive)

- Given an algebraic polygraph modulo (P, Q, R, S), denote by π : P₁⟨Q⟩ → P₁⟨Q⟩/P₂⟨Q⟩ sending a ground term f on its equivalence class f modulo P₂⟨Q⟩.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.
- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?
- Assume that P is such that $P_2 = P'_2 \cup P''_2$, with P'_2 confluent modulo P''_2 .
 - $\sigma(\overline{f}) = NF(f, P'_2 \mod P''_2)$, where $f \in \pi^{-1}(\overline{f})$, the set of normal forms of f for P'_2 modulo P''_2 .

Example :

String rewriting systems

Linear Rewriting Systems

 $P_2 = \emptyset \cup Ass$

 $\sigma(\overline{f}) = \pi^{-1}(\overline{f})$ (Every 2-cell is positive)

- Given an algebraic polygraph modulo (P, Q, R, S), denote by π : P₁⟨Q⟩ → P₁⟨Q⟩/P₂⟨Q⟩ sending a ground term f on its equivalence class f modulo P₂⟨Q⟩.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.
- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?
- Assume that P is such that $P_2 = P'_2 \cup P''_2$, with P'_2 confluent modulo P''_2 .
 - $\sigma(\overline{f}) = NF(f, P'_2 \mod P''_2)$, where $f \in \pi^{-1}(\overline{f})$, the set of normal forms of f for P'_2 modulo P''_2 .

Example :

String rewriting systemsLinear Rewriting Systems $P_2 = \emptyset \cup Ass$ $P_2 = CMod \cup AC$ $\sigma(\overline{f}) = \pi^{-1}(\overline{f})$ (Every 2-cell is positive)

- Given an algebraic polygraph modulo (P, Q, R, S), denote by π : P₁⟨Q⟩ → P₁⟨Q⟩/P₂⟨Q⟩ sending a ground term f on its equivalence class f modulo P₂⟨Q⟩.
- Positive strategy : a map $\sigma : \overline{P\langle Q \rangle} \to \text{Set}$ such that $\sigma(\overline{f})$ is a chosen non-empty subset of $\pi^{-1}(\overline{f})$.
- A S-rewriting step $e \star a \star e'$ is called σ -positive if a_{-} belongs to $\sigma(\overline{a_{-}})$.
- Question : How to define such strategies ?
- Assume that P is such that $P_2 = P'_2 \cup P''_2$, with P'_2 confluent modulo P''_2 .
 - $\sigma(\overline{f}) = NF(f, P'_2 \mod P''_2)$, where $f \in \pi^{-1}(\overline{f})$, the set of normal forms of f for P'_2 modulo P''_2 .

Example :

String rewriting systemsLinear Rewriting Systems $P_2 = \emptyset \cup Ass$ $P_2 = CMod \cup AC$ $\sigma(\overline{f}) = \pi^{-1}(\overline{f})$ $\sigma(\overline{f}) = NF(f, CMod mod AC)$ (Every 2-cell is positive)

Linear Rewriting Systems

Let CMod be the cartesian 2-polygraph given by CMod₀ = {r, m}, CMod₁ contains operations

 $+: rr \rightarrow r, -: r \rightarrow r, 0: 0 \rightarrow r, \cdot: rr \rightarrow r, .: rm \rightarrow r, \oplus: mm \rightarrow m, l: m \rightarrow m, 0^{\oplus}: 0 \rightarrow m$ and CMod₂ contains the following generating 2-cells :

$x + 0 \Rightarrow x$	$(ring_1)$	$x + (-x) \Rightarrow 0$	$(ring_2)$
$-0 \Rightarrow 0$	$(ring_3)$	$-(-x) \Rightarrow x$	$(ring_4)$
$-(x+y) \Rightarrow (-x) + (-y)$	$(ring_5)$	$x \cdot (y+z) \Rightarrow x \cdot y + x \cdot z$	$(ring_6)$
$x \cdot 0 \Rightarrow 0$	$(ring_7)$	$x \cdot (-y) \Rightarrow -(x \cdot y)$	$(ring_8)$
$1 \cdot x \Rightarrow x$	$(ring_9)$	$a\oplus 0^\oplus \Rightarrow a$	(mod_1)
$x.(y.a) \Rightarrow (x \cdot y).a$	(mod_2)	$1.a \Rightarrow a$	(mod_3)
$x.a \oplus y.a \Rightarrow (x+y).a$	(mod_4)	$x.(a \oplus b) \Rightarrow (x.a) \oplus (y.b)$	(mod_5)
$a \oplus (r.a) \Rightarrow (1+r).a$	(mod_6)	$a\oplus a \Rightarrow (1+1).a$	(mod_7)
$x.0^{\oplus} \Rightarrow 0^{\oplus}$	(mod_8)	$0.a \Rightarrow 0^\oplus$	(mod9)
$I(a) \Rightarrow (-1).a$	(mod_{10})		

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Rewriting Systems

Let CMod be the cartesian 2-polygraph given by CMod₀ = {r, m}, CMod₁ contains operations

 $+: rr \rightarrow r, -: r \rightarrow r, 0: 0 \rightarrow r, \cdot: rr \rightarrow r, .: rm \rightarrow r, \oplus: mm \rightarrow m, l: m \rightarrow m, 0^{\oplus}: 0 \rightarrow m$ and CMod₂ contains the following generating 2-cells :

$x + 0 \Rightarrow x$	$(ring_1)$	$x + (-x) \Rightarrow 0$	$(ring_2)$
$-0 \Rightarrow 0$	$(ring_3)$	$-(-x) \Rightarrow x$	$(ring_4)$
$-(x+y) \Rightarrow (-x) + (-y)$	$(ring_5)$	$x \cdot (y+z) \Rightarrow x \cdot y + x \cdot z$	$(ring_6)$
$x \cdot 0 \Rightarrow 0$	$(ring_7)$	$x \cdot (-y) \Rightarrow -(x \cdot y)$	$(ring_8)$
$1 \cdot x \Rightarrow x$	$(ring_9)$	$a \oplus 0^{\oplus} \Rightarrow a$	(mod_1)
$x.(y.a) \Rightarrow (x \cdot y).a$	(mod_2)	$1.a \Rightarrow a$	(mod_3)
$x.a \oplus y.a \Rightarrow (x+y).a$	(mod_4)	$x.(a \oplus b) \Rightarrow (x.a) \oplus (y.b)$	(mod_5)
$a \oplus (r.a) \Rightarrow (1+r).a$	(mod_6)	$m{a}\oplusm{a}\Rightarrow(1+1).m{a}$	(mod_7)
$x.0^{\oplus} \Rightarrow 0^{\oplus}$	(mod_8)	$0.a \Rightarrow 0^{\oplus}$	(mod9)
$I(a) \Rightarrow (-1).a$	(mod_{10})		

Theorem [Peterson-Stickel, Hullot] CMod is a presentation of the theory of modules over commutative rings that is confluent modulo AC.

Let $\mathcal{P} = (P, Q, R, S)$ be an APM with a positivity strategy σ ,

• Let $\mathcal{P} = (P, Q, R, S)$ be an APM with a positivity strategy σ , a σ -branching is a triple (a, e, b) where a, b are σ -positive S-rewriting paths and e is a 2-cell of $P_2\langle Q \rangle^{\top}$ such that

$$\begin{array}{c}
f \xrightarrow{a} f' \\
e \\
\varphi \\
g \xrightarrow{b} g'
\end{array}$$

• Let $\mathcal{P} = (P, Q, R, S)$ be an APM with a positivity strategy σ , a σ -branching is a triple (a, e, b) where a, b are σ -positive S-rewriting paths and e is a 2-cell of $P_2\langle Q \rangle^{\top}$ such that

$$\begin{array}{c|c}
f \xrightarrow{a} f' \\
e \\
g \xrightarrow{b} g'
\end{array}$$

• It is local if $\ell(a)$, $\ell(e)$, $\ell(b) \leq 1$ and $\ell(a) + \ell(e) + \ell(b) = 2$.

Let P = (P, Q, R, S) be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P₂⟨Q⟩^T such that

- ▶ It is local if $\ell(a)$, $\ell(e)$, $\ell(b) \leq 1$ and $\ell(a) + \ell(e) + \ell(b) = 2$.
- ▶ It is σ -confluent if there exists σ -positive *S*-rewriting paths a' and b' and a 2-cell e'' in $P_2\langle Q \rangle^{\top}$ as above.

Let P = (P, Q, R, S) be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P₂⟨Q⟩^T such that

- It is local if $\ell(a)$, $\ell(e)$, $\ell(b) \leq 1$ and $\ell(a) + \ell(e) + \ell(b) = 2$.
- ▶ It is σ -confluent if there exists σ -positive *S*-rewriting paths a' and b' and a 2-cell e'' in $P_2\langle Q \rangle^{\top}$ as above.

 $a_{-} \longrightarrow a'_{-}$

 \triangleright \mathcal{P} is positively σ -confluent if, for any S-rewriting step a, there exists :

Let P = (P, Q, R, S) be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P₂⟨Q⟩^T such that

- It is local if $\ell(a)$, $\ell(e)$, $\ell(b) \leq 1$ and $\ell(a) + \ell(e) + \ell(b) = 2$.
- ▶ It is σ -confluent if there exists σ -positive *S*-rewriting paths a' and b' and a 2-cell e'' in $P_2\langle Q \rangle^{\top}$ as above.
- \triangleright \mathcal{P} is positively σ -confluent if, for any S-rewriting step a, there exists :
 - a representative $\widetilde{a_{-}} \in \sigma(\overline{a_{-}})$ of a_{-} ,

• Let $\mathcal{P} = (P, Q, R, S)$ be an APM with a positivity strategy σ , a σ -branching is a triple (a, e, b) where a, b are σ -positive S-rewriting paths and e is a 2-cell of $P_2\langle Q \rangle^{\top}$ such that

- ▶ It is local if $\ell(a)$, $\ell(e)$, $\ell(b) \leq 1$ and $\ell(a) + \ell(e) + \ell(b) = 2$.
- ▶ It is σ -confluent if there exists σ -positive *S*-rewriting paths a' and b' and a 2-cell e'' in $P_2\langle Q \rangle^{\top}$ as above.
- \mathcal{P} is positively σ -confluent if, for any S-rewriting step a, there exists :
 - a representative $\widetilde{a_-} \in \sigma(\overline{a_-})$ of a_- ,
 - two σ -positive S-reductions a' and b' of size at most 1 as follows :

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - **terminating** is there is no infinite σ -positive ${}_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ -positive ρR_P -rewriting sequence contains infinitely many times the same 1-cell,

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - terminating is there is no infinite σ -positive $_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ-positive PRP-rewriting sequence contains infinitely many times the same 1-cell,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If *P* is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - terminating is there is no infinite σ -positive $_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ-positive PRP-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier D. Malbos] If *P* is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
 - Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - terminating is there is no infinite σ -positive $_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ-positive PRP-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier D. Malbos] If *P* is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
 - Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Classification of local σ-branchings modulo :

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - terminating is there is no infinite σ -positive $_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ-positive PRP-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier D. Malbos] If *P* is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
 - Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo :

 $A[a_+] \stackrel{a}{\longleftarrow} A[a_-] \stackrel{a}{\longrightarrow} A[a_+]$ Trivial

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - terminating is there is no infinite σ -positive $_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ-positive PRP-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier D. Malbos] If *P* is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
 - Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo :

 $\begin{array}{c} A[a_+] \xleftarrow{a} A[a_-] \xrightarrow{a} A[a_+] & A[a_+] \xleftarrow{a} A[a_-] = A[A'[b_-]] \xrightarrow{b} A[A'[b_+]] \\ \\ Trivial & Inclusion independant \end{array}$

A D > 4 回 > 4 回 > 4 回 > 1 回 > 1 の Q Q

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - terminating is there is no infinite σ -positive $_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ-positive PRP-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier D. Malbos] If *P* is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
 - Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo :

 $\begin{array}{c} A[a_+] \xleftarrow{a} A[a_-] \xrightarrow{a} A[a_+] & A[a_+] \xleftarrow{a} A[a_-] = A[A'[b_-]] \xrightarrow{b} A[A'[b_+]] \\ & \text{Trivial} & \text{Inclusion independant} \end{array}$

A D > 4 回 > 4 回 > 4 回 > 1 回

$$B[a_{-}, b_{-}] \xrightarrow{B[a, b_{-}]} B[a_{+}, b_{-}]$$

$$\|\downarrow$$

$$B[a_{-}, b_{-}] \xrightarrow{B[a_{-}, b]} B[a_{-}, b_{+}]$$
Orthogonal

- An APM $\mathcal{P} = (P, Q, R, S)$ with a positive strategy σ is
 - terminating is there is no infinite σ -positive $_{P}R_{P}$ -rewriting sequence.
 - quasi-terminating if any infinite σ -positive $_{PRP}$ -rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier D. Malbos] If *P* is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
 - Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo :

 $\begin{array}{c} A[a_+] \xleftarrow{a} A[a_-] \xrightarrow{a} A[a_+] & A[a_+] \xleftarrow{a} A[a_-] = A[A'[b_-]] \xrightarrow{b} A[A'[b_+]] \\ & \text{Trivial} & \text{Inclusion independant} \end{array}$

 $B[a_{-}, b_{-}] \xrightarrow{B[a, b_{-}]} B[a_{+}, b_{-}]$ $\|\downarrow$ $B[a_{-}, b_{-}] \xrightarrow{B[a_{-}, b]} B[a_{-}, b_{+}]$ Orthogonal

$$B[a_{-}, e_{-}] \xrightarrow{B[a, e_{-}]} B[a_{+}, e_{-}]$$

$$B[a_{-}, e]_{\downarrow}$$

$$B[a_{-}, e_{+}]$$

• The remaining local σ -branchings modulo are called non-orthogonal σ -branchings modulo.

• The remaining local σ -branchings modulo are called non-orthogonal σ -branchings modulo.

• Critical branchings modulo : minimal non-orthogonal branchings for the order relation $(a, e, b) \sqsubseteq (A[a], A[e], A[b])$, where A is a ground context.

- **•** The remaining local σ -branchings modulo are called non-orthogonal σ -branchings modulo.
- Critical branchings modulo : minimal non-orthogonal branchings for the order relation $(a, e, b) \sqsubseteq (A[a], A[e], A[b])$, where A is a ground context.
- Theorem (CBL modulo) [Chenavier D. Malbos] Let (P, Q, R, S) be a quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally σ-confluent modulo if and only if :

 a_0) any critical σ -branching modulo (a, b) made of S-rewriting steps is σ -confluent modulo.

b₀) any critical σ -branching modulo (a, e), with a is an S-rewriting step and e is a 2-cell in $P_2\langle Q \rangle^{\top}$ of length 1, is σ -confluent modulo.

- **•** The remaining local σ -branchings modulo are called non-orthogonal σ -branchings modulo.
- Critical branchings modulo : minimal non-orthogonal branchings for the order relation $(a, e, b) \sqsubseteq (A[a], A[e], A[b])$, where A is a ground context.
- Theorem (CBL modulo) [Chenavier D. Malbos] Let (P, Q, R, S) be a quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally σ-confluent modulo if and only if :

 a_0) any critical σ -branching modulo (a, b) made of S-rewriting steps is σ -confluent modulo.

b₀) any critical σ -branching modulo (a, e), with a is an S-rewriting step and e is a 2-cell in $P_2\langle Q \rangle^{\top}$ of length 1, is σ -confluent modulo.

• When $P_2(Q) R \subseteq S$, property **b**₀) is always satisfied.

III. Algebraic critical branching lemma

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Confluence modulo diagrams of an APM :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Confluence modulo diagrams of an APM :

Confluence modulo diagrams of an APM :

イロト 不得 トイヨト イヨト

Confluence modulo diagrams of an APM :

 Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient.

イロト 不得下 イヨト イヨト

Confluence modulo diagrams of an APM :

Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.

イロト 不得 トイヨト イヨト

э

Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.
- Example : With P = Mon, $Q = \{s, t\}$, $R = \{\alpha : \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$ and σ the full strategy, the AIRS is

$$\langle s, t \mid sts \rightarrow tst \rangle \quad s = \leftthreetimes \mid , \quad t = \mid \leftthreetimes, \quad \checkmark = \bigvee$$

イロト 不得 トイヨト イヨト

э
Algebraic rewriting systems and critical branching lemma

Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.
- Example : With P = Mon, $Q = \{s, t\}$, $R = \{\alpha : \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$ and σ the full strategy, the AIRS is

The critical branchings of an algebraic rewriting systems are the projections of the critical branchings of the form a₀).

Algebraic rewriting systems and critical branching lemma

Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.
- Example : With P = Mon, $Q = \{s, t\}$, $R = \{\alpha : \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$ and σ the full strategy, the AIRS is

- The critical branchings of an algebraic rewriting systems are the projections of the critical branchings of the form a₀).
- ► Theorem [Chenavier D. Malbos] Let $\mathcal{P} = (P, Q, R, S)$ be a quasi-terminating and positively σ -confluent APM, and \mathcal{A} be an ARS on \mathcal{P} . Then \mathcal{A} is locally confluent if and only if its critical branchings are confluent.

- For string rewriting systems :
 - ▶ With the full strategy $(\sigma(\overline{f}) = \pi^{-1}(\overline{f}))$, orthogonal are confluent without quasi-termination.

- For string rewriting systems :
 - With the full strategy $(\sigma(\overline{f}) = \pi^{-1}(\overline{f}))$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
 - Termination is a necessary assumption to ensure confluence of orthogonal branchings.
 - PRP quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
 - The positive σ -confluence implies the following factorization property :

- For string rewriting systems :
 - With the full strategy $(\sigma(\overline{f}) = \pi^{-1}(\overline{f}))$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
 - Termination is a necessary assumption to ensure confluence of orthogonal branchings.
 - PRP quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
 - The positive σ -confluence implies the following factorization property :

Questions :

- For string rewriting systems :
 - Vith the full strategy $(\sigma(\overline{f}) = \pi^{-1}(\overline{f}))$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
 - Termination is a necessary assumption to ensure confluence of orthogonal branchings.
 - PRP quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
 - The positive σ -confluence implies the following factorization property :

Questions :

Is the positive σ-confluence always satisfied in the linear setting ?

- For string rewriting systems :
 - Vith the full strategy $(\sigma(\overline{f}) = \pi^{-1}(\overline{f}))$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
 - Termination is a necessary assumption to ensure confluence of orthogonal branchings.
 - PRP quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
 - The positive σ -confluence implies the following factorization property :

Questions :

- Is the positive σ-confluence always satisfied in the linear setting ?
- How does the critical branching lemma translates if we change the positive strategy ?

- For string rewriting systems :
 - ▶ With the full strategy $(\sigma(\overline{f}) = \pi^{-1}(\overline{f}))$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
 - Termination is a necessary assumption to ensure confluence of orthogonal branchings.
 - PRP quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
 - The positive σ -confluence implies the following factorization property :

Questions :

- Is the positive σ-confluence always satisfied in the linear setting ?
- How does the critical branching lemma translates if we change the positive strategy ?

Conclusion :

- This work suggests new tools for rewriting in various algebraic structures.
- Need a better understanding of how to choose strategies, and ensure positive confluence in general.
- Develop a critical branching lemma for various algebraic contexts : groups, differential algebras, operads, higher-dimensional categories.

Thank you !