
Algebraic critical pair lemma

Cyrille Chenavier - Benjamin Dupont - Philippe Malbos

Institut Camille Jordan, Université Lyon 1

International Workshop on Confluence 2020

30, June 2020

Outline

I. Introduction : string and linear critical pair lemma

II. Algebraic polygraphs modulo

III. Algebraic critical pair lemma

I. Introduction: string and linear critical

pair lemma

Algebraic rewriting and critical branching lemma

I Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

I First algebraic rewriting result : the critical branching lemma (CBL).

I Depends on the algebraic context and the nature of branchings.

I Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and
overlappings.

I String rewriting systems (SRS)

// �� // // // DD //

KS

��

// �� // DD //

KS

��

Orthogonal Overlappings

I Proof of CBL:

I Orthogonal are confluent,

I Overlappings are confluent from confluence of critical branchings.

I For SRSs, orthogonal branchings are always confluent, Knuth-Bendix ’70, Nivat ’72.

I Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its
critical branchings are confluent.

Algebraic rewriting and critical branching lemma

I Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

I First algebraic rewriting result : the critical branching lemma (CBL).

I Depends on the algebraic context and the nature of branchings.

I Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and
overlappings.

I String rewriting systems (SRS)

// �� // // // DD //

KS

��

// �� // DD //

KS

��

Orthogonal Overlappings

I Proof of CBL:

I Orthogonal are confluent,

I Overlappings are confluent from confluence of critical branchings.

I For SRSs, orthogonal branchings are always confluent, Knuth-Bendix ’70, Nivat ’72.

I Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its
critical branchings are confluent.

Algebraic rewriting and critical branching lemma

I Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

I First algebraic rewriting result : the critical branching lemma (CBL).

I Depends on the algebraic context and the nature of branchings.

I Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and
overlappings.

I String rewriting systems (SRS)

// �� // // // DD //

KS

��

// �� // DD //

KS

��

Orthogonal Overlappings

I Proof of CBL:

I Orthogonal are confluent,

I Overlappings are confluent from confluence of critical branchings.

I For SRSs, orthogonal branchings are always confluent, Knuth-Bendix ’70, Nivat ’72.

I Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its
critical branchings are confluent.

Algebraic rewriting and critical branching lemma

I Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

I First algebraic rewriting result : the critical branching lemma (CBL).

I Depends on the algebraic context and the nature of branchings.

I Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and
overlappings.

I String rewriting systems (SRS)

// �� // // // DD //

KS

��

// �� // DD //

KS

��

Orthogonal Overlappings

I Proof of CBL:

I Orthogonal are confluent,

I Overlappings are confluent from confluence of critical branchings.

I For SRSs, orthogonal branchings are always confluent, Knuth-Bendix ’70, Nivat ’72.

I Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its
critical branchings are confluent.

Algebraic rewriting and critical branching lemma

I Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

I First algebraic rewriting result : the critical branching lemma (CBL).

I Depends on the algebraic context and the nature of branchings.

I Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and
overlappings.

I String rewriting systems (SRS)

// �� // // // DD //

KS

��

// �� // DD //

KS

��

Orthogonal Overlappings

I Proof of CBL:

I Orthogonal are confluent,

I Overlappings are confluent from confluence of critical branchings.

I For SRSs, orthogonal branchings are always confluent, Knuth-Bendix ’70, Nivat ’72.

I Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its
critical branchings are confluent.

Algebraic rewriting and critical branching lemma

I Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

I First algebraic rewriting result : the critical branching lemma (CBL).

I Depends on the algebraic context and the nature of branchings.

I Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and
overlappings.

I String rewriting systems (SRS)

// �� // // // DD //

KS

��

// �� // DD //

KS

��

Orthogonal Overlappings

I Proof of CBL:

I Orthogonal are confluent,

I Overlappings are confluent from confluence of critical branchings.

I For SRSs, orthogonal branchings are always confluent, Knuth-Bendix ’70, Nivat ’72.

I Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its
critical branchings are confluent.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt 4xzt · · ·

2xzt

xyt + xzt xzt + 2xyt

3xyt

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt 4xzt · · ·

2xzt

xyt + xzt xzt + 2xyt

3xyt

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt 4xzt · · ·

2xzt

xyt + xzt xzt + 2xyt

3xyt

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt 4xzt · · ·

2xzt

xyt + xzt xzt + 2xyt

3xyt

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt 4xzt · · ·

2xzt

xyt + xzt

αt + xzt 00

xyt + xβ
..

xzt + 2xyt

3xyt

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt 4xzt · · ·

2xzt xzt + xβ

##
xyt + xzt

αt + xzt 00

xyt + xβ
..

xzt + 2xyt

3xyt
αt + 2xyt

;;

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt

4xzt · · ·

2xzt

2xβ 00

xzt + xβ

##
xyt + xzt

αt + xzt 00

xyt + xβ
..

xzt + 2xyt

3xyt
αt + 2xyt

;;

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt
4αt

// 4xzt
4xβ
// · · ·

2xzt

2xβ 00

xzt + xβ

##
xyt + xzt

αt + xzt 00

xyt + xβ
..

xzt + 2xyt

3xyt
αt + 2xyt

;;

3xzt 6xyt · · ·

I CBL requires an additional termination assumption to hold.

Linear critical branching lemma

I Question : How does this adapt for other algebraic structures ?

I For linear rewriting, Guiraud - Hoffbeck - Malbos ’19:

I To avoid non-termination, restriction on rewriting steps: if u → v , then −u → −v and

v = (u + v)− u → (u + v)− v = u.

I Rewriting step : λf + h → λg + h such that f /∈ Supp(h) = {hi monomials | h =
∑

hi}.

I Without termination, orthogonal branchings may be non-confluent, e.g. with generators x ,
y , z and rules α : xy → xz and β : zt → 2yt.

I It has no critical branching, and a non-confluent orthogonal branching :

4xyt
4αt

// 4xzt
4xβ
// · · ·

2xzt

2xβ 00

xzt + xβ

##
xyt + xzt

αt + xzt 00

xyt + xβ
..

xzt + 2xyt

3xyt
αt + 2xyt

;;

3αt
.. 3xzt

3xβ
// 6xyt

6αt
// · · ·

I CBL requires an additional termination assumption to hold.

II. Algebraic polygraphs modulo

Algebraic polygraphs

I Objective : Formalize an algebraic CBL, depending on the interaction between rewriting
rules and algebraic axioms.

I Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples
(P0,P1,P2) made of

I a signature (P0,P1) of sorts and operations,

I a set of relations P2 on the free 1-theory P×1 on P1, containing terms on operations of P1.

I Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

({•}, {µ : 2→ 1, e : 0→ 1}, {µ(µ(x , y), z)⇒ µ(x , µ(y , z)), µ(e, x)⇒ x , µ(x , e)⇒ x .})

I Rewriting paths are interpreted as 2-cells in the free 2-theory P×2 on (P0,P1,P2), and are
denoted by a : a− ⇒ a+.

I An algebraic polygraph is a data made of

I a cartesian 2-polygraph P,

I a family of generating constants Q = (Qs)s∈P0
, seen as operations x : 0→ s,

I a family on relations on the set P1〈Q〉 of ground terms over (P0,P1 ∪ Q).

I Example : P = Mon, Q = {s, t} and R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))}.

Algebraic polygraphs

I Objective : Formalize an algebraic CBL, depending on the interaction between rewriting
rules and algebraic axioms.

I Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples
(P0,P1,P2) made of

I a signature (P0,P1) of sorts and operations,

I a set of relations P2 on the free 1-theory P×1 on P1, containing terms on operations of P1.

I Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

({•}, {µ : 2→ 1, e : 0→ 1}, {µ(µ(x , y), z)⇒ µ(x , µ(y , z)), µ(e, x)⇒ x , µ(x , e)⇒ x .})

I Rewriting paths are interpreted as 2-cells in the free 2-theory P×2 on (P0,P1,P2), and are
denoted by a : a− ⇒ a+.

I An algebraic polygraph is a data made of

I a cartesian 2-polygraph P,

I a family of generating constants Q = (Qs)s∈P0
, seen as operations x : 0→ s,

I a family on relations on the set P1〈Q〉 of ground terms over (P0,P1 ∪ Q).

I Example : P = Mon, Q = {s, t} and R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))}.

Algebraic polygraphs

I Objective : Formalize an algebraic CBL, depending on the interaction between rewriting
rules and algebraic axioms.

I Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples
(P0,P1,P2) made of

I a signature (P0,P1) of sorts and operations,

I a set of relations P2 on the free 1-theory P×1 on P1, containing terms on operations of P1.

I Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

({•}, {µ : 2→ 1, e : 0→ 1}, {µ(µ(x , y), z)⇒ µ(x , µ(y , z)), µ(e, x)⇒ x , µ(x , e)⇒ x .})

I Rewriting paths are interpreted as 2-cells in the free 2-theory P×2 on (P0,P1,P2), and are
denoted by a : a− ⇒ a+.

I An algebraic polygraph is a data made of

I a cartesian 2-polygraph P,

I a family of generating constants Q = (Qs)s∈P0
, seen as operations x : 0→ s,

I a family on relations on the set P1〈Q〉 of ground terms over (P0,P1 ∪ Q).

I Example : P = Mon, Q = {s, t} and R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))}.

Algebraic polygraphs

I Objective : Formalize an algebraic CBL, depending on the interaction between rewriting
rules and algebraic axioms.

I Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples
(P0,P1,P2) made of

I a signature (P0,P1) of sorts and operations,

I a set of relations P2 on the free 1-theory P×1 on P1, containing terms on operations of P1.

I Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

({•}, {µ : 2→ 1, e : 0→ 1}, {µ(µ(x , y), z)⇒ µ(x , µ(y , z)), µ(e, x)⇒ x , µ(x , e)⇒ x .})

I Rewriting paths are interpreted as 2-cells in the free 2-theory P×2 on (P0,P1,P2), and are
denoted by a : a− ⇒ a+.

I An algebraic polygraph is a data made of

I a cartesian 2-polygraph P,

I a family of generating constants Q = (Qs)s∈P0
, seen as operations x : 0→ s,

I a family on relations on the set P1〈Q〉 of ground terms over (P0,P1 ∪ Q).

I Example : P = Mon, Q = {s, t} and R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))}.

Algebraic polygraphs

I Objective : Formalize an algebraic CBL, depending on the interaction between rewriting
rules and algebraic axioms.

I Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples
(P0,P1,P2) made of

I a signature (P0,P1) of sorts and operations,

I a set of relations P2 on the free 1-theory P×1 on P1, containing terms on operations of P1.

I Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

({•}, {µ : 2→ 1, e : 0→ 1}, {µ(µ(x , y), z)⇒ µ(x , µ(y , z)), µ(e, x)⇒ x , µ(x , e)⇒ x .})

I Rewriting paths are interpreted as 2-cells in the free 2-theory P×2 on (P0,P1,P2), and are
denoted by a : a− ⇒ a+.

I An algebraic polygraph is a data made of

I a cartesian 2-polygraph P,

I a family of generating constants Q = (Qs)s∈P0
, seen as operations x : 0→ s,

I a family on relations on the set P1〈Q〉 of ground terms over (P0,P1 ∪ Q).

I Example : P = Mon, Q = {s, t} and R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))}.

Algebraic polygraphs

I Objective : Formalize an algebraic CBL, depending on the interaction between rewriting
rules and algebraic axioms.

I Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples
(P0,P1,P2) made of

I a signature (P0,P1) of sorts and operations,

I a set of relations P2 on the free 1-theory P×1 on P1, containing terms on operations of P1.

I Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

({•}, {µ : 2→ 1, e : 0→ 1}, {µ(µ(x , y), z)⇒ µ(x , µ(y , z)), µ(e, x)⇒ x , µ(x , e)⇒ x .})

I Rewriting paths are interpreted as 2-cells in the free 2-theory P×2 on (P0,P1,P2), and are
denoted by a : a− ⇒ a+.

I An algebraic polygraph is a data made of

I a cartesian 2-polygraph P,

I a family of generating constants Q = (Qs)s∈P0
, seen as operations x : 0→ s,

I a family on relations on the set P1〈Q〉 of ground terms over (P0,P1 ∪ Q).

I Example : P = Mon, Q = {s, t} and R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))}.

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2

, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Algebraic polygraphs modulo
I Algebraic polygraph of axioms : (P0,P1〈Q〉,P2〈Q〉) where P2〈Q〉 contains the

"groundified" 2-cells of P2, e.g.

µ(µ(s, t), s)⇒ µ(s, µ(t, s)) associativity relation in sts

I Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

I Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes :

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo : (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

I Algebraic polygraph modulo : quadruple (P,Q,R, S) where (P,Q,R) is an algebraic
polygraph and S is a set of oriented relations such that

R ⊆ S ⊆ P2〈Q〉RP2〈Q〉 := PRP .

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems

Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems

Linear Rewriting Systems

P2 = ∅ ∪ Ass

P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems

Linear Rewriting Systems

P2 = ∅ ∪ Ass

P2 = CMod ∪ AC

σ(f) = π−1(f)

σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass

P2 = CMod ∪ AC

σ(f) = π−1(f)

σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f)

σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Positivity

I Given an algebraic polygraph modulo (P,Q,R,S), denote by π : P1〈Q〉 → P1〈Q〉/P2〈Q〉
sending a ground term f on its equivalence class f modulo P2〈Q〉.

I Positive strategy : a map σ : P〈Q〉 → Set such that σ(f) is a chosen non-empty subset of
π−1(f).

I A S-rewriting step e ? a ? e′ is called σ-positive if a− belongs to σ(a−).

I Question : How to define such strategies ?

I Assume that P is such that P2 = P′2 ∪ P′′2 , with P′2 confluent modulo P′′2 .

I σ(f) = NF (f ,P′2 mod P′′2), where f ∈ π−1(f), the set of normal forms of f for P′2 modulo P′′2 .

I Example :

String rewriting systems Linear Rewriting Systems

P2 = ∅ ∪ Ass P2 = CMod ∪ AC

σ(f) = π−1(f) σ(f) = NF (f ,CMod mod AC)

(Every 2-cell is positive)

Linear Rewriting Systems

I Let CMod be the cartesian 2-polygraph given by CMod0 = {r , m}, CMod1 contains
operations

+ : rr → r ,− : r → r , 0 : 0→ r , · : rr → r , . : rm→ r ,⊕ : mm→ m, I : m→ m, 0⊕ : 0→ m

and CMod2 contains the following generating 2-cells :

x + 0⇒ x (ring1) x + (−x)⇒ 0 (ring2)

−0⇒ 0 (ring3) −(−x)⇒ x (ring4)

−(x + y)⇒ (−x) + (−y) (ring5) x · (y + z)⇒ x · y + x · z (ring6)

x · 0⇒ 0 (ring7) x · (−y)⇒ −(x · y) (ring8)

1 · x ⇒ x (ring9) a⊕ 0⊕ ⇒ a (mod1)

x .(y .a)⇒ (x · y).a (mod2) 1.a⇒ a (mod3)

x .a⊕ y .a⇒ (x + y).a (mod4) x .(a⊕ b)⇒ (x .a)⊕ (y .b) (mod5)

a⊕ (r .a)⇒ (1+ r).a (mod6) a⊕ a⇒ (1+ 1).a (mod7)

x .0⊕ ⇒ 0⊕ (mod8) 0.a⇒ 0⊕ (mod9)

I (a)⇒ (−1).a (mod10)

I Theorem [Peterson-Stickel, Hullot] CMod is a presentation of the theory of modules over
commutative rings that is confluent modulo AC.

Linear Rewriting Systems

I Let CMod be the cartesian 2-polygraph given by CMod0 = {r , m}, CMod1 contains
operations

+ : rr → r ,− : r → r , 0 : 0→ r , · : rr → r , . : rm→ r ,⊕ : mm→ m, I : m→ m, 0⊕ : 0→ m

and CMod2 contains the following generating 2-cells :

x + 0⇒ x (ring1) x + (−x)⇒ 0 (ring2)

−0⇒ 0 (ring3) −(−x)⇒ x (ring4)

−(x + y)⇒ (−x) + (−y) (ring5) x · (y + z)⇒ x · y + x · z (ring6)

x · 0⇒ 0 (ring7) x · (−y)⇒ −(x · y) (ring8)

1 · x ⇒ x (ring9) a⊕ 0⊕ ⇒ a (mod1)

x .(y .a)⇒ (x · y).a (mod2) 1.a⇒ a (mod3)

x .a⊕ y .a⇒ (x + y).a (mod4) x .(a⊕ b)⇒ (x .a)⊕ (y .b) (mod5)

a⊕ (r .a)⇒ (1+ r).a (mod6) a⊕ a⇒ (1+ 1).a (mod7)

x .0⊕ ⇒ 0⊕ (mod8) 0.a⇒ 0⊕ (mod9)

I (a)⇒ (−1).a (mod10)

I Theorem [Peterson-Stickel, Hullot] CMod is a presentation of the theory of modules over
commutative rings that is confluent modulo AC.

Positive confluence

I Let P = (P,Q,R,S) be an APM with a positivity strategy σ,

a σ-branching is a triple
(a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P2〈Q〉> such that

f f ′ f ′′

g g ′ g ′′

I It is local if `(a), `(e), `(b) ≤ 1 and `(a) + `(e) + `(b) = 2.

I It is σ-confluent if there exists σ-positive S-rewriting paths a′ and b′ and a 2-cell e” in
P2〈Q〉> as above.

I P is positively σ-confluent if, for any S-rewriting step a, there exists :

I a representative ã− ∈ σ(a−) of a−,

I two σ-positive S-reductions a′ and b′ of size at most 1 as follows :

ã−

a− a′−

Positive confluence

I Let P = (P,Q,R,S) be an APM with a positivity strategy σ, a σ-branching is a triple
(a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P2〈Q〉> such that

f
a //

e

��

f ′

f ′′

g
b
// g ′

g ′′

I It is local if `(a), `(e), `(b) ≤ 1 and `(a) + `(e) + `(b) = 2.

I It is σ-confluent if there exists σ-positive S-rewriting paths a′ and b′ and a 2-cell e” in
P2〈Q〉> as above.

I P is positively σ-confluent if, for any S-rewriting step a, there exists :

I a representative ã− ∈ σ(a−) of a−,

I two σ-positive S-reductions a′ and b′ of size at most 1 as follows :

ã−

a− a′−

Positive confluence

I Let P = (P,Q,R,S) be an APM with a positivity strategy σ, a σ-branching is a triple
(a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P2〈Q〉> such that

f
a //

e

��

f ′

f ′′

g
b
// g ′

g ′′

I It is local if `(a), `(e), `(b) ≤ 1 and `(a) + `(e) + `(b) = 2.

I It is σ-confluent if there exists σ-positive S-rewriting paths a′ and b′ and a 2-cell e” in
P2〈Q〉> as above.

I P is positively σ-confluent if, for any S-rewriting step a, there exists :

I a representative ã− ∈ σ(a−) of a−,

I two σ-positive S-reductions a′ and b′ of size at most 1 as follows :

ã−

a− a′−

Positive confluence

I Let P = (P,Q,R,S) be an APM with a positivity strategy σ, a σ-branching is a triple
(a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P2〈Q〉> such that

f
a //

e

��

f ′
a′ // f ′′

e′

��
g

b
// g ′

b′
// g ′′

I It is local if `(a), `(e), `(b) ≤ 1 and `(a) + `(e) + `(b) = 2.

I It is σ-confluent if there exists σ-positive S-rewriting paths a′ and b′ and a 2-cell e” in
P2〈Q〉> as above.

I P is positively σ-confluent if, for any S-rewriting step a, there exists :

I a representative ã− ∈ σ(a−) of a−,

I two σ-positive S-reductions a′ and b′ of size at most 1 as follows :

ã−

a− a′−

Positive confluence

I Let P = (P,Q,R,S) be an APM with a positivity strategy σ, a σ-branching is a triple
(a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P2〈Q〉> such that

f
a //

e

��

f ′
a′ // f ′′

e′

��
g

b
// g ′

b′
// g ′′

I It is local if `(a), `(e), `(b) ≤ 1 and `(a) + `(e) + `(b) = 2.

I It is σ-confluent if there exists σ-positive S-rewriting paths a′ and b′ and a 2-cell e” in
P2〈Q〉> as above.

I P is positively σ-confluent if, for any S-rewriting step a, there exists :

I a representative ã− ∈ σ(a−) of a−,

I two σ-positive S-reductions a′ and b′ of size at most 1 as follows :

ã−

a− a
// a′−

Positive confluence

I Let P = (P,Q,R,S) be an APM with a positivity strategy σ, a σ-branching is a triple
(a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P2〈Q〉> such that

f
a //

e

��

f ′
a′ // f ′′

e′

��
g

b
// g ′

b′
// g ′′

I It is local if `(a), `(e), `(b) ≤ 1 and `(a) + `(e) + `(b) = 2.

I It is σ-confluent if there exists σ-positive S-rewriting paths a′ and b′ and a 2-cell e” in
P2〈Q〉> as above.

I P is positively σ-confluent if, for any S-rewriting step a, there exists :

I a representative ã− ∈ σ(a−) of a−,

I two σ-positive S-reductions a′ and b′ of size at most 1 as follows :

ã−

e

��
a− a

// a′−

Positive confluence

I Let P = (P,Q,R,S) be an APM with a positivity strategy σ, a σ-branching is a triple
(a, e, b) where a,b are σ-positive S-rewriting paths and e is a 2-cell of P2〈Q〉> such that

f
a //

e

��

f ′
a′ // f ′′

e′

��
g

b
// g ′

b′
// g ′′

I It is local if `(a), `(e), `(b) ≤ 1 and `(a) + `(e) + `(b) = 2.

I It is σ-confluent if there exists σ-positive S-rewriting paths a′ and b′ and a 2-cell e” in
P2〈Q〉> as above.

I P is positively σ-confluent if, for any S-rewriting step a, there exists :

I a representative ã− ∈ σ(a−) of a−,

I two σ-positive S-reductions a′ and b′ of size at most 1 as follows :

ã−
a′ //

e

��
e′′

��
a− a

// a′−
e′
//

b′
//

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+] A[a+] A[a−] = A[A′[b−]]

aoo b // A[A′[b+]]
Trivial Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal Orthogonal modulo

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+] A[a+] A[a−] = A[A′[b−]]

aoo b // A[A′[b+]]
Trivial Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal Orthogonal modulo

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+] A[a+] A[a−] = A[A′[b−]]

aoo b // A[A′[b+]]
Trivial Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal Orthogonal modulo

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+] A[a+] A[a−] = A[A′[b−]]

aoo b // A[A′[b+]]
Trivial Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal Orthogonal modulo

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+]

A[a+] A[a−] = A[A′[b−]]
aoo b // A[A′[b+]]

Trivial

Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal Orthogonal modulo

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+] A[a+] A[a−] = A[A′[b−]]

aoo b // A[A′[b+]]
Trivial Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal Orthogonal modulo

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+] A[a+] A[a−] = A[A′[b−]]

aoo b // A[A′[b+]]
Trivial Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal

Orthogonal modulo

Critical branching lemma modulo

I An APM P = (P,Q,R, S) with a positive strategy σ is

I terminating is there is no infinite σ-positive PRP -rewriting sequence.

I quasi-terminating if any infinite σ-positive PRP -rewriting sequence contains infinitely many
times the same 1-cell,

f1 // f2 // . . . // fk
''
flgg

I Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If P is
(quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

I Proof : extension of Huet’s induction principle, using a distance on the quasi-normal forms.

I Classification of local σ-branchings modulo :

A[a+] A[a−]
aoo a // A[a+] A[a+] A[a−] = A[A′[b−]]

aoo b // A[A′[b+]]
Trivial Inclusion independant

B[a−, b−]

= ��

B[a,b−] // B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e] ��

B[a,e−] // B[a+, e−]

B[a−, e+]

Orthogonal Orthogonal modulo

Critical branching lemma modulo

I The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.

I Critical branchings modulo : minimal non-orthogonal branchings for the order relation
(a, e, b) v (A[a],A[e],A[b]), where A is a ground context.

I Theorem (CBL modulo) [Chenavier - D. - Malbos] Let (P,Q,R,S) be a
quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally
σ-confluent modulo if and only if :

a0) any critical σ-branching modulo (a, b) made of S-rewriting steps is σ-confluent modulo.

a−

= ��

a // a+

a−
b

// b+

b0) any critical σ-branching modulo (a, e), with a is an S-rewriting step and e is a 2-cell in
P2〈Q〉> of length 1, is σ-confluent modulo.

a−

e ��

a // a+

e+

I When P2〈Q〉R ⊆ S, property b0) is always satisfied.

Critical branching lemma modulo

I The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.

I Critical branchings modulo : minimal non-orthogonal branchings for the order relation
(a, e, b) v (A[a],A[e],A[b]), where A is a ground context.

I Theorem (CBL modulo) [Chenavier - D. - Malbos] Let (P,Q,R,S) be a
quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally
σ-confluent modulo if and only if :

a0) any critical σ-branching modulo (a, b) made of S-rewriting steps is σ-confluent modulo.

a−

= ��

a // a+

a−
b

// b+

b0) any critical σ-branching modulo (a, e), with a is an S-rewriting step and e is a 2-cell in
P2〈Q〉> of length 1, is σ-confluent modulo.

a−

e ��

a // a+

e+

I When P2〈Q〉R ⊆ S, property b0) is always satisfied.

Critical branching lemma modulo

I The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.

I Critical branchings modulo : minimal non-orthogonal branchings for the order relation
(a, e, b) v (A[a],A[e],A[b]), where A is a ground context.

I Theorem (CBL modulo) [Chenavier - D. - Malbos] Let (P,Q,R,S) be a
quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally
σ-confluent modulo if and only if :

a0) any critical σ-branching modulo (a, b) made of S-rewriting steps is σ-confluent modulo.

a−

= ��

a // a+

a−
b

// b+

b0) any critical σ-branching modulo (a, e), with a is an S-rewriting step and e is a 2-cell in
P2〈Q〉> of length 1, is σ-confluent modulo.

a−

e ��

a // a+

e+

I When P2〈Q〉R ⊆ S, property b0) is always satisfied.

Critical branching lemma modulo

I The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.

I Critical branchings modulo : minimal non-orthogonal branchings for the order relation
(a, e, b) v (A[a],A[e],A[b]), where A is a ground context.

I Theorem (CBL modulo) [Chenavier - D. - Malbos] Let (P,Q,R,S) be a
quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally
σ-confluent modulo if and only if :

a0) any critical σ-branching modulo (a, b) made of S-rewriting steps is σ-confluent modulo.

a−

= ��

a // a+

a−
b

// b+

b0) any critical σ-branching modulo (a, e), with a is an S-rewriting step and e is a 2-cell in
P2〈Q〉> of length 1, is σ-confluent modulo.

a−

e ��

a // a+

e+

I When P2〈Q〉R ⊆ S, property b0) is always satisfied.

III. Algebraic critical branching lemma

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a //

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′
// g ′

b′′
// g ′′

e4��
h

c
// h′

c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a

+
//

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′

+ // g ′
b′′

+ // g ′′

e4��
h

c

+ // h′
c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a

+
//

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′

+ // g ′
b′′

+ // g ′′

e4��
h

c

+ // h′
c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a

+
//

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′

+ // g ′
b′′

+ // g ′′

e4��
h

c

+ // h′
c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient.

It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a

+
//

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′

+ // g ′
b′′

+ // g ′′

e4��
h

c

+ // h′
c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a

+
//

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′

+ // g ′
b′′

+ // g ′′

e4��
h

c

+ // h′
c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a

+
//

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′

+ // g ′
b′′

+ // g ′′

e4��
h

c

+ // h′
c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Algebraic rewriting systems and critical branching lemma

I Confluence modulo diagrams of an APM :

f
a

+
//

e1
��

f ′
a′ // f ′′

e3
��

g
b
// g ′

e2
��

b′

+ // g ′
b′′

+ // g ′′

e4��
h

c

+ // h′
c′
// h′′

Quotient by P2〈Q〉

f ′ a′

��
f = g

a ..

b
//

g ′ b′′

��g ′
b′

EE

c
// h′

c′

HH

I Algebraic rewriting system (AlRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S .

I Example : With P = Mon, Q = {s, t}, R = {α : µ(µ(s, t), s)⇒ µ(t, µ(s, t))} and σ the
full strategy, the AlRS is

〈s, t | sts → tst 〉 s = , t = , =

I The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form a0).

I Theorem [Chenavier - D. - Malbos] Let P = (P,Q,R,S) be a quasi-terminating and
positively σ-confluent APM, and A be an ARS on P. Then A is locally confluent if and
only if its critical branchings are confluent.

Examples
I For string rewriting systems :

I With the full strategy (σ(f) = π−1(f)), orthogonal are confluent without quasi-termination.

I For linear rewriting systems :

I Termination is a necessary assumption to ensure confluence of orthogonal branchings.

I
PRP quasi-terminating implies that the quotient AlRS is (quasi)-terminating.

I The positive σ-confluence implies the following factorization property :

h

f

a

44

b
77

g

c
gg

I Questions :
I Is the positive σ-confluence always satisfied in the linear setting ?

I How does the critical branching lemma translates if we change the positive strategy ?

I Conclusion :
I This work suggests new tools for rewriting in various algebraic structures.

I Need a better understanding of how to choose strategies, and ensure positive confluence in
general.

I Develop a critical branching lemma for various algebraic contexts : groups, differential
algebras, operads, higher-dimensional categories.

Examples
I For string rewriting systems :

I With the full strategy (σ(f) = π−1(f)), orthogonal are confluent without quasi-termination.

I For linear rewriting systems :

I Termination is a necessary assumption to ensure confluence of orthogonal branchings.

I
PRP quasi-terminating implies that the quotient AlRS is (quasi)-terminating.

I The positive σ-confluence implies the following factorization property :

h

f

a

44

b
77

g

c
gg

I Questions :
I Is the positive σ-confluence always satisfied in the linear setting ?

I How does the critical branching lemma translates if we change the positive strategy ?

I Conclusion :
I This work suggests new tools for rewriting in various algebraic structures.

I Need a better understanding of how to choose strategies, and ensure positive confluence in
general.

I Develop a critical branching lemma for various algebraic contexts : groups, differential
algebras, operads, higher-dimensional categories.

Examples
I For string rewriting systems :

I With the full strategy (σ(f) = π−1(f)), orthogonal are confluent without quasi-termination.

I For linear rewriting systems :

I Termination is a necessary assumption to ensure confluence of orthogonal branchings.

I
PRP quasi-terminating implies that the quotient AlRS is (quasi)-terminating.

I The positive σ-confluence implies the following factorization property :

h

f

a

44

b
77

g

c
gg

I Questions :

I Is the positive σ-confluence always satisfied in the linear setting ?

I How does the critical branching lemma translates if we change the positive strategy ?

I Conclusion :
I This work suggests new tools for rewriting in various algebraic structures.

I Need a better understanding of how to choose strategies, and ensure positive confluence in
general.

I Develop a critical branching lemma for various algebraic contexts : groups, differential
algebras, operads, higher-dimensional categories.

Examples
I For string rewriting systems :

I With the full strategy (σ(f) = π−1(f)), orthogonal are confluent without quasi-termination.

I For linear rewriting systems :

I Termination is a necessary assumption to ensure confluence of orthogonal branchings.

I
PRP quasi-terminating implies that the quotient AlRS is (quasi)-terminating.

I The positive σ-confluence implies the following factorization property :

h

f

a

44

b
77

g

c
gg

I Questions :
I Is the positive σ-confluence always satisfied in the linear setting ?

I How does the critical branching lemma translates if we change the positive strategy ?

I Conclusion :
I This work suggests new tools for rewriting in various algebraic structures.

I Need a better understanding of how to choose strategies, and ensure positive confluence in
general.

I Develop a critical branching lemma for various algebraic contexts : groups, differential
algebras, operads, higher-dimensional categories.

Examples
I For string rewriting systems :

I With the full strategy (σ(f) = π−1(f)), orthogonal are confluent without quasi-termination.

I For linear rewriting systems :

I Termination is a necessary assumption to ensure confluence of orthogonal branchings.

I
PRP quasi-terminating implies that the quotient AlRS is (quasi)-terminating.

I The positive σ-confluence implies the following factorization property :

h

f

a

44

b
77

g

c
gg

I Questions :
I Is the positive σ-confluence always satisfied in the linear setting ?

I How does the critical branching lemma translates if we change the positive strategy ?

I Conclusion :
I This work suggests new tools for rewriting in various algebraic structures.

I Need a better understanding of how to choose strategies, and ensure positive confluence in
general.

I Develop a critical branching lemma for various algebraic contexts : groups, differential
algebras, operads, higher-dimensional categories.

Examples
I For string rewriting systems :

I With the full strategy (σ(f) = π−1(f)), orthogonal are confluent without quasi-termination.

I For linear rewriting systems :

I Termination is a necessary assumption to ensure confluence of orthogonal branchings.

I
PRP quasi-terminating implies that the quotient AlRS is (quasi)-terminating.

I The positive σ-confluence implies the following factorization property :

h

f

a

44

b
77

g

c
gg

I Questions :
I Is the positive σ-confluence always satisfied in the linear setting ?

I How does the critical branching lemma translates if we change the positive strategy ?

I Conclusion :
I This work suggests new tools for rewriting in various algebraic structures.

I Need a better understanding of how to choose strategies, and ensure positive confluence in
general.

I Develop a critical branching lemma for various algebraic contexts : groups, differential
algebras, operads, higher-dimensional categories.

Thank you !

