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> Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

> First algebraic rewriting result : the critical branching lemma (CBL).

P Depends on the algebraic context and the nature of branchings.

P Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and

overlappings.

P String rewriting systems (SRS) W W

Orthogonal Overlappings

» Proof of CBL:

» Orthogonal are confluent,

» Overlappings are confluent from confluence of critical branchings.

> For SRSs, orthogonal branchings are always confluent, Knuth-Bendix '70, Nivat '72.

» Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its

critical branchings are confluent.
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» Question : How does this adapt for other algebraic structures ?

» For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
P To avoid non-termination, restriction on rewriting steps: if u — v, then —u — —v and

v=(u+v)—u—(utv)—v=u

» Rewriting step : Af + h — Ag + h such that f ¢ Supp(h) = {h; monomials | h = 3~ h;}.

» Without termination, orthogonal branchings may be non-confluent, e.g. with generators x,
vy, z and rules a : xy — xz and (3 : zt — 2yt.

P It has no critical branching, and a non-confluent orthogonal branching :

2x8 4at 4xp
Axyt ——— 4xzt ——> - - -

at + xzt ot xzt + x[3

A

Xyt + xzt xzt + 2xyt
7
t

xyt + x8 3xyi at + 2xyt

3xzt —————> bxyt ——> -+

3at 3x5 6at

» CBL requires an additional termination assumption to hold.
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» Objective : Formalize an algebraic CBL, depending on the interaction between rewriting
rules and algebraic axioms.

> Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples
(Po, P1, P2) made of

> a signature (Po, P1) of sorts and operations,
P a set of relations P> on the free 1-theory P1>< on Py, containing terms on operations of Py.
» Example : Algebraic theory of monoids : cartesian 2-polygraph Mon

({o}, {p - 2= 1, e 0 0= 1}, {u(u(x,y),2) = plx, 1y, 2)), p(e, x) = x, p(x, €) = x.})

» Rewriting paths are interpreted as 2-cells in the free 2-theory P2>< on (Po, P1, P2), and are
denoted by a:a_ = ay.

» An algebraic polygraph is a data made of

P a cartesian 2-polygraph P,
P a family of generating constants Q = (QS)SGPQ’ seen as operations x : 0 — s,

P a family on relations on the set P1(Q) of ground terms over (Po, Py U Q).

» Example : P = Mon, Q ={s, t} and R = {a : u(u(s,t),s) = u(t, u(s, t))}.
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> Algebraic polygraph of axioms : (Po, P1{Q), P2(Q)) where P>(Q) contains the
"groundified" 2-cells of P», e.g.

w(p(s, t),s) = u(s,u(t,s)) ~» associativity relation in sts

> Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of
axioms.

> Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

P Rewriting with rules in R, but confluence modulo E, Huet '80

R, R
u—>>u > w
E$ $E
v—=>1v > w ERe
R R u > v
> - . . . E E
Rewriting with R on E-equivalence classes :
u —
R

P Rewriting system modulo : (R, E, S) such that R C S C gRg, Jouannaud-Kirchner '84.

> Algebraic polygraph modulo : quadruple (P, Q, R, S) where (P, Q, R) is an algebraic
polygraph and S is a set of oriented relations such that

RS SC paaRraca) == PR
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> Let CMod be the cartesian 2-polygraph given by CModo = {r, m}, CMod; contains
operations

+irmr—=r—r—r0:0=r-:mr—r.:m—or,d:mm-—>ml:m—>mo0®:0—->m

and CModa contains the following generating 2-cells :

x4+ 0= x (ringy) x+(—x)=0 (ring,)
—-0=0 (rings) —(—x) = x (ringy)
—(x+y)= (=) +(-y) (rings) x-(y+z)=x-y+x-z (rings)
X020 (ring) X (=) = —(x-) (ringe)
1-x=x (ringg) a®0® =a (mody)
x.(y.a) = (x-y).a (mody) la=a (mods)
xadya= (x+y)a (moda) x.(a® b) = (x.a) ® (y.b) (mods)
ad(ra)=(1+r).a (mods) ada=(1+1).a (mod7)
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> Let CMod be the cartesian 2-polygraph given by CModo = {r, m}, CMod; contains
operations

+irmr—=r—r—r0:0=r-:mr—r.:m—or,d:mm-—>ml:m—>mo0®:0—->m

and CModa contains the following generating 2-cells :

x4+ 0= x (ringy) x+(—x)=0 (ring,)
—-0=0 (rings) —(—x) = x (ringy)
—(x+y)= (=) +(-y) (rings) x-(y+z)=x-y+x-z (rings)
X020 (ring) X (=) = —(x-) (ringe)
1-x=x (ringg) a®0® =a (mody)
x.(y.a) = (x-y).a (mody) la=a (mods)
xadya= (x+y)a (moda) x.(a® b) = (x.a) ® (y.b) (mods)
ad(ra)=(1+r).a (mods) ada=(1+1).a (mod7)
x.0% = 0% (mods) 0.a= 0% (modo)
I(a) = (—1).a (modio)

» Theorem [Peterson-Stickel, Hullot] CMod is a presentation of the theory of modules over
commutative rings that is confluent modulo AC.
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> Let P =(P,Q,R,S) be an APM with a positivity strategy o, a o-branching is a triple
(a, e, b) where a,b are o-positive S-rewriting paths and e is a 2-cell of P2(Q) " such that
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> It is local if £(a), £(e), £(b) <1 and £(a) + £(e) + ¢(b) = 2.
> It is o-confluent if there exists o-positive S-rewriting paths a’ and b’ and a 2-cell €” in

P>(Q) T as above.

> P is positively o-confluent if, for any S-rewriting step a, there exists :
P a representative a_ € o(a—) of a_,

» two o-positive S-reductions a’ and b’ of size at most 1 as follows :
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» Critical branchings modulo : minimal non-orthogonal branchings for the order relation
(a, e, b) C (Ala], Ale], A[b]), where A is a ground context.
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» The remaining local o-branchings modulo are called non-orthogonal o-branchings modulo.
» Critical branchings modulo : minimal non-orthogonal branchings for the order relation
(a, e, b) C (Ala], Ale], A[b]), where A is a ground context.

» Theorem (CBL modulo) [Chenavier - D. - Malbos] Let (P, Q,R,S) be a
quasi-terminating and positively o-confluent APM with a positive strategy o. It locally
o-confluent modulo if and only if :

ag) any critical o-branching modulo (a, b) made of S-rewriting steps is o-confluent modulo.

a
a_ ———>a;

I

a_ —> b
B +

bg) any critical o-branching modulo (a, ), with a is an S-rewriting step and e is a 2-cell in
P2<Q)T of length 1, is o-confluent modulo.
am — 2 > a,
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> When p,(qyR C S, property bg) is always satisfied.
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» Confluence modulo diagrams of an APM :
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> Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the
quotient. It is the same for each choice of S.

> Example : With P = Mon, Q = {s,t}, R = {a : p(u(s,t),s) = u(t,u(s,t))} and o the
full strategy, the AIRS is

(s, t|sts > tst) s=p< |, t=| p<, t}%:}ﬁ

» The critical branchings of an algebraic rewriting systems are the projections of the critical
branchings of the form ag).

» Theorem [Chenavier - D. - Malbos] Let P = (P, Q, R, S) be a quasi-terminating and
positively o-confluent APM, and A be an ARS on P. Then A is locally confluent if and

only if its critical branchings are confluent.
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Examples

> For string rewriting systems :

> With the full strategy (o(f) = w~*(f)), orthogonal are confluent without quasi-termination.
» For linear rewriting systems :

P Termination is a necessary assumption to ensure confluence of orthogonal branchings.

» pRp quasi-terminating implies that the quotient AIRS is (quasi)-terminating.

P The positive o-confluence implies the following factorization property :

VN
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3

» Questions :

P Is the positive o-confluence always satisfied in the linear setting ?

» How does the critical branching lemma translates if we change the positive strategy ?

» Conclusion :

P This work suggests new tools for rewriting in various algebraic structures.

P> Need a better understanding of how to choose strategies, and ensure positive confluence in
general.

>

Develop a critical branching lemma for various algebraic contexts : groups, differential
algebras, operads, higher-dimensional categories.



Thank you !



