Algebraic critical pair lemma

Cyrille Chenavier - Benjamin Dupont - Philippe Malbos

Institut Camille Jordan, Université Lyon 1

International Workshop on Confluence 2020

30, June 2020

Outline

I. Introduction : string and linear critical pair lemma
II. Algebraic polygraphs modulo
III. Algebraic critical pair lemma

I. Introduction: string and linear critical pair lemma

Algebraic rewriting and critical branching lemma

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.

Algebraic rewriting and critical branching lemma

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
- Depends on the algebraic context and the nature of branchings.
- Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.

Algebraic rewriting and critical branching lemma

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
- Depends on the algebraic context and the nature of branchings.
- Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.
- String rewriting systems (SRS)

Orthogonal

Overlappings

Algebraic rewriting and critical branching lemma

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
- Depends on the algebraic context and the nature of branchings.
- Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.
- String rewriting systems (SRS)

Orthogonal

Overlappings

- Proof of CBL:
- Orthogonal are confluent,
- Overlappings are confluent from confluence of critical branchings.

Algebraic rewriting and critical branching lemma

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
- Depends on the algebraic context and the nature of branchings.
- Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.
- String rewriting systems (SRS)

- Proof of CBL:
- Orthogonal are confluent,
- Overlappings are confluent from confluence of critical branchings.
- For SRSs, orthogonal branchings are always confluent, Knuth-Bendix '70, Nivat '72.

Algebraic rewriting and critical branching lemma

- Algebraic rewriting : studying presentations by generators and oriented algebraic relations.
- First algebraic rewriting result : the critical branching lemma (CBL).
- Depends on the algebraic context and the nature of branchings.
- Branchings are splitted into orthogonal (depending on the algebraic nature of objects) and overlappings.
- String rewriting systems (SRS)

- Proof of CBL:
- Orthogonal are confluent,
- Overlappings are confluent from confluence of critical branchings.
- For SRSs, orthogonal branchings are always confluent, Knuth-Bendix '70, Nivat '72.
- Theorem (String critical pair lemma) An SRS is locally confluent if and only if all its critical branchings are confluent.

Linear critical branching lemma

- Question : How does this adapt for other algebraic structures ?

Linear critical branching lemma

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
- To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

Linear critical branching lemma

- Question : How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
- To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

- Rewriting step : $\lambda f+h \rightarrow \lambda g+h$ such that $f \notin \operatorname{Supp}(h)=\left\{h_{i}\right.$ monomials $\left.\mid h=\sum h_{i}\right\}$.

Linear critical branching lemma

- Question: How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
- To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

- Rewriting step : $\lambda f+h \rightarrow \lambda g+h$ such that $f \notin \operatorname{Supp}(h)=\left\{h_{i}\right.$ monomials $\left.\mid h=\sum h_{i}\right\}$.
- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha: x y \rightarrow x z$ and $\beta: z t \rightarrow 2 y t$.

Linear critical branching lemma

- Question: How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
- To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

- Rewriting step : $\lambda f+h \rightarrow \lambda g+h$ such that $f \notin \operatorname{Supp}(h)=\left\{h_{i}\right.$ monomials $\left.\mid h=\sum h_{i}\right\}$.
- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha: x y \rightarrow x z$ and $\beta: z t \rightarrow 2 y t$.
- It has no critical branching, and a non-confluent orthogonal branching :

Linear critical branching lemma

- Question: How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
- To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

- Rewriting step : $\lambda f+h \rightarrow \lambda g+h$ such that $f \notin \operatorname{Supp}(h)=\left\{h_{i}\right.$ monomials $\left.\mid h=\sum h_{i}\right\}$.
- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha: x y \rightarrow x z$ and $\beta: z t \rightarrow 2 y t$.
- It has no critical branching, and a non-confluent orthogonal branching :

Linear critical branching lemma

- Question: How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
- To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

- Rewriting step : $\lambda f+h \rightarrow \lambda g+h$ such that $f \notin \operatorname{Supp}(h)=\left\{h_{i}\right.$ monomials $\left.\mid h=\sum h_{i}\right\}$.
- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha: x y \rightarrow x z$ and $\beta: z t \rightarrow 2 y t$.
- It has no critical branching, and a non-confluent orthogonal branching :

Linear critical branching lemma

- Question: How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
- To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

- Rewriting step : $\lambda f+h \rightarrow \lambda g+h$ such that $f \notin \operatorname{Supp}(h)=\left\{h_{i}\right.$ monomials $\left.\mid h=\sum h_{i}\right\}$.
- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha: x y \rightarrow x z$ and $\beta: z t \rightarrow 2 y t$.
- It has no critical branching, and a non-confluent orthogonal branching :

Linear critical branching lemma

- Question: How does this adapt for other algebraic structures ?
- For linear rewriting, Guiraud - Hoffbeck - Malbos '19:
\rightarrow To avoid non-termination, restriction on rewriting steps: if $u \rightarrow v$, then $-u \rightarrow-v$ and

$$
v=(u+v)-u \rightarrow(u+v)-v=u
$$

- Rewriting step : $\lambda f+h \rightarrow \lambda g+h$ such that $f \notin \operatorname{Supp}(h)=\left\{h_{i}\right.$ monomials $\left.\mid h=\sum h_{i}\right\}$.
- Without termination, orthogonal branchings may be non-confluent, e.g. with generators x, y, z and rules $\alpha: x y \rightarrow x z$ and $\beta: z t \rightarrow 2 y t$.
- It has no critical branching, and a non-confluent orthogonal branching :

- CBL requires an additional termination assumption to hold.

II. Algebraic polygraphs modulo

Algebraic polygraphs

- Objective: Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.

Algebraic polygraphs

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P_{0}, P_{1}, P_{2}) made of
- a signature $\left(P_{0}, P_{\mathbf{1}}\right)$ of sorts and operations,
- a set of relations P_{2} on the free 1-theory P_{1}^{\times}on P_{1}, containing terms on operations of P_{1}.

Algebraic polygraphs

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P_{0}, P_{1}, P_{2}) made of
- a signature ($P_{0}, P_{\mathbf{1}}$) of sorts and operations,
- a set of relations P_{2} on the free 1-theory P_{1}^{\times}on P_{1}, containing terms on operations of P_{1}.
- Example: Algebraic theory of monoids: cartesian 2-polygraph Mon
$(\{\bullet\},\{\mu: 2 \rightarrow 1, e: 0 \rightarrow 1\},\{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x\}$.

Algebraic polygraphs

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P_{0}, P_{1}, P_{2}) made of
- a signature ($P_{0}, P_{\mathbf{1}}$) of sorts and operations,
- a set of relations P_{2} on the free 1-theory P_{1}^{\times}on P_{1}, containing terms on operations of P_{1}.
- Example: Algebraic theory of monoids: cartesian 2-polygraph Mon
$(\{\bullet\},\{\mu: 2 \rightarrow 1, e: 0 \rightarrow 1\},\{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x \cdot\})$
- Rewriting paths are interpreted as 2-cells in the free 2-theory P_{2}^{\times}on (P_{0}, P_{1}, P_{2}), and are denoted by a : $a_{-} \Rightarrow a_{+}$.

Algebraic polygraphs

- Objective: Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P_{0}, P_{1}, P_{2}) made of
- a signature ($P_{0}, P_{\mathbf{1}}$) of sorts and operations,
- a set of relations P_{2} on the free 1-theory P_{1}^{\times}on P_{1}, containing terms on operations of P_{1}.
- Example: Algebraic theory of monoids: cartesian 2-polygraph Mon
$(\{\bullet\},\{\mu: 2 \rightarrow 1, e: 0 \rightarrow 1\},\{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x \cdot\})$
- Rewriting paths are interpreted as 2-cells in the free 2-theory P_{2}^{\times}on (P_{0}, P_{1}, P_{2}), and are denoted by a : $a_{-} \Rightarrow a_{+}$.
- An algebraic polygraph is a data made of
- a cartesian 2-polygraph P,
- a family of generating constants $Q=\left(Q_{s}\right)_{s \in P_{0}}$, seen as operations $x: 0 \rightarrow s$,
- a family on relations on the set $P_{\mathbf{1}}\langle Q\rangle$ of ground terms over ($P_{\mathbf{0}}, P_{\mathbf{1}} \cup Q$).

Algebraic polygraphs

- Objective : Formalize an algebraic CBL, depending on the interaction between rewriting rules and algebraic axioms.
- Algebraic theories are presented by cartesian 2-polygraphs (Malbos-Mimram), that is triples (P_{0}, P_{1}, P_{2}) made of
- a signature ($P_{0}, P_{\mathbf{1}}$) of sorts and operations,
- a set of relations P_{2} on the free 1-theory P_{1}^{\times}on P_{1}, containing terms on operations of P_{1}.
- Example : Algebraic theory of monoids: cartesian 2-polygraph Mon
$(\{\bullet\},\{\mu: 2 \rightarrow 1, e: 0 \rightarrow 1\},\{\mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)), \mu(e, x) \Rightarrow x, \mu(x, e) \Rightarrow x \cdot\})$
- Rewriting paths are interpreted as 2-cells in the free 2-theory P_{2}^{\times}on (P_{0}, P_{1}, P_{2}), and are denoted by a : $a_{-} \Rightarrow a_{+}$.
- An algebraic polygraph is a data made of
- a cartesian 2-polygraph P,
- a family of generating constants $Q=\left(Q_{s}\right)_{s \in P_{0}}$, seen as operations $x: 0 \rightarrow s$,
- a family on relations on the set $P_{\mathbf{1}}\langle Q\rangle$ of ground terms over ($P_{\mathbf{0}}, P_{\mathbf{1}} \cup Q$).
- Example : $P=$ Mon, $Q=\{s, t\}$ and $R=\{\alpha: \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$.

Algebraic polygraphs modulo

- Algebraic polygraph of axioms : $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}

Algebraic polygraphs modulo

- Algebraic polygraph of axioms : $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}, e.g.

$$
\mu(\mu(s, t), s) \Rightarrow \mu(s, \mu(t, s)) \quad \rightsquigarrow \quad \text { associativity relation in sts }
$$

Algebraic polygraphs modulo

- Algebraic polygraph of axioms : $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}, e.g.

$$
\mu(\mu(s, t), s) \Rightarrow \mu(s, \mu(t, s)) \quad \rightsquigarrow \quad \text { associativity relation in sts }
$$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.

Algebraic polygraphs modulo

- Algebraic polygraph of axioms : $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}, e.g.

$$
\mu(\mu(s, t), s) \Rightarrow \mu(s, \mu(t, s)) \quad \rightsquigarrow \quad \text { associativity relation in sts }
$$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.

Algebraic polygraphs modulo

- Algebraic polygraph of axioms: $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}, e.g.

$$
\mu(\mu(s, t), s) \Rightarrow \mu(s, \mu(t, s)) \quad \rightsquigarrow \quad \text { associativity relation in sts }
$$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.
- Rewriting with rules in R, but confluence modulo E, Huet '80

Algebraic polygraphs modulo

- Algebraic polygraph of axioms: $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}, e.g.

$$
\mu(\mu(s, t), s) \Rightarrow \mu(s, \mu(t, s)) \quad \rightsquigarrow \quad \text { associativity relation in sts }
$$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.
- Rewriting with rules in R, but confluence modulo E, Huet '80

- Rewriting with R on E-equivalence classes :

Algebraic polygraphs modulo

- Algebraic polygraph of axioms: $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}, e.g.

$$
\mu(\mu(s, t), s) \Rightarrow \mu(s, \mu(t, s)) \quad \rightsquigarrow \quad \text { associativity relation in sts }
$$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.
- Rewriting with rules in R, but confluence modulo E, Huet '80

- Rewriting with R on E-equivalence classes :

- Rewriting system modulo : (R, E, S) such that $R \subseteq S \subseteq{ }_{E} R_{E}$, Jouannaud-Kirchner '84.

Algebraic polygraphs modulo

- Algebraic polygraph of axioms: $\left(P_{0}, P_{1}\langle Q\rangle, P_{2}\langle Q\rangle\right)$ where $P_{2}\langle Q\rangle$ contains the "groundified" 2-cells of P_{2}, e.g.

$$
\mu(\mu(s, t), s) \Rightarrow \mu(s, \mu(t, s)) \quad \rightsquigarrow \quad \text { associativity relation in sts }
$$

- Idea : Rewriting with respect to an algebraic polygraph, modulo the algebraic polygraph of axioms.
- Rewriting modulo : a set R of oriented relations and a set E of non-oriented axioms.
- Rewriting with rules in R, but confluence modulo E, Huet '80

- Rewriting with R on E-equivalence classes :

- Rewriting system modulo : (R, E, S) such that $R \subseteq S \subseteq{ }_{E} R_{E}$, Jouannaud-Kirchner '84.
- Algebraic polygraph modulo: quadruple (P, Q, R, S) where (P, Q, R) is an algebraic polygraph and S is a set of oriented relations such that

$$
R \subseteq S \subseteq P_{\mathbf{2}}\langle Q\rangle R_{P_{\mathbf{2}}\langle Q\rangle}:={ }_{p} R_{P}
$$

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question: How to define such strategies ?

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question : How to define such strategies ?
- Assume that P is such that $P_{2}=P_{2}^{\prime} \cup P_{2}^{\prime \prime}$, with P_{2}^{\prime} confluent modulo $P_{2}^{\prime \prime}$.
- $\sigma(\bar{f})=N F\left(f, P_{2}^{\prime} \bmod P_{2}^{\prime \prime}\right)$, where $f \in \pi^{-1}(\bar{f})$, the set of normal forms of f for P_{2}^{\prime} modulo $P_{2}^{\prime \prime}$.

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question : How to define such strategies ?
- Assume that P is such that $P_{2}=P_{2}^{\prime} \cup P_{2}^{\prime \prime}$, with P_{2}^{\prime} confluent modulo $P_{2}^{\prime \prime}$.
- $\sigma(\bar{f})=N F\left(f, P_{2}^{\prime} \bmod P_{2}^{\prime \prime}\right)$, where $f \in \pi^{-1}(\bar{f})$, the set of normal forms of f for P_{2}^{\prime} modulo $P_{2}^{\prime \prime}$.
- Example :

String rewriting systems

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question: How to define such strategies ?
- Assume that P is such that $P_{2}=P_{2}^{\prime} \cup P_{2}^{\prime \prime}$, with P_{2}^{\prime} confluent modulo $P_{2}^{\prime \prime}$.
- $\sigma(\bar{f})=N F\left(f, P_{2}^{\prime} \bmod P_{2}^{\prime \prime}\right)$, where $f \in \pi^{-1}(\bar{f})$, the set of normal forms of f for P_{2}^{\prime} modulo $P_{2}^{\prime \prime}$.
- Example:

String rewriting systems

$$
P_{2}=\varnothing \cup \mathrm{Ass}
$$

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question: How to define such strategies ?
- Assume that P is such that $P_{2}=P_{2}^{\prime} \cup P_{2}^{\prime \prime}$, with P_{2}^{\prime} confluent modulo $P_{2}^{\prime \prime}$.
- $\sigma(\bar{f})=N F\left(f, P_{2}^{\prime} \bmod P_{2}^{\prime \prime}\right)$, where $f \in \pi^{-1}(\bar{f})$, the set of normal forms of f for P_{2}^{\prime} modulo $P_{2}^{\prime \prime}$.
- Example :

String rewriting systems

$$
\begin{gathered}
P_{2}=\varnothing \cup \text { Ass } \\
\sigma(\bar{f})=\pi^{-1}(\bar{f})
\end{gathered}
$$

(Every 2-cell is positive)

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question: How to define such strategies ?
- Assume that P is such that $P_{2}=P_{2}^{\prime} \cup P_{2}^{\prime \prime}$, with P_{2}^{\prime} confluent modulo $P_{2}^{\prime \prime}$.
- $\sigma(\bar{f})=N F\left(f, P_{2}^{\prime} \bmod P_{2}^{\prime \prime}\right)$, where $f \in \pi^{-1}(\bar{f})$, the set of normal forms of f for P_{2}^{\prime} modulo $P_{2}^{\prime \prime}$.
- Example :

String rewriting systems Linear Rewriting Systems

$$
\begin{gathered}
P_{2}=\varnothing \cup \text { Ass } \\
\sigma(\bar{f})=\pi^{-1}(\bar{f})
\end{gathered}
$$

(Every 2-cell is positive)

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question: How to define such strategies ?
- Assume that P is such that $P_{2}=P_{2}^{\prime} \cup P_{2}^{\prime \prime}$, with P_{2}^{\prime} confluent modulo $P_{2}^{\prime \prime}$.
- $\sigma(\bar{f})=N F\left(f, P_{2}^{\prime} \bmod P_{2}^{\prime \prime}\right)$, where $f \in \pi^{-1}(\bar{f})$, the set of normal forms of f for P_{2}^{\prime} modulo $P_{2}^{\prime \prime}$.
- Example :

String rewriting systems

$$
\begin{gathered}
P_{2}=\varnothing \cup \text { Ass } \\
\sigma(\bar{f})=\pi^{-1}(\bar{f})
\end{gathered}
$$

(Every 2-cell is positive)

Positivity

- Given an algebraic polygraph modulo (P, Q, R, S), denote by $\pi: P_{1}\langle Q\rangle \rightarrow P_{1}\langle Q\rangle / P_{2}\langle Q\rangle$ sending a ground term f on its equivalence class \bar{f} modulo $P_{2}\langle Q\rangle$.
- Positive strategy: a map $\sigma: \overline{P\langle Q\rangle} \rightarrow$ Set such that $\sigma(\bar{f})$ is a chosen non-empty subset of $\pi^{-1}(\bar{f})$.
- A S-rewriting step $e \star a \star e^{\prime}$ is called σ-positive if a_{-}belongs to $\sigma\left(\overline{a_{-}}\right)$.
- Question: How to define such strategies ?
- Assume that P is such that $P_{2}=P_{2}^{\prime} \cup P_{2}^{\prime \prime}$, with P_{2}^{\prime} confluent modulo $P_{2}^{\prime \prime}$.
- $\sigma(\bar{f})=N F\left(f, P_{2}^{\prime} \bmod P_{2}^{\prime \prime}\right)$, where $f \in \pi^{-1}(\bar{f})$, the set of normal forms of f for P_{2}^{\prime} modulo $P_{2}^{\prime \prime}$.
- Example :

String rewriting systems Linear Rewriting Systems

$$
\begin{array}{cc}
P_{2}=\varnothing \cup \text { Ass } & P_{2}=\mathrm{CMod} \cup A C \\
\sigma(\bar{f})=\pi^{-1}(\bar{f}) & \sigma(\bar{f})=N F(f, \mathrm{CMod} \bmod A C)
\end{array}
$$

(Every 2-cell is positive)

Linear Rewriting Systems

- Let CMod be the cartesian 2-polygraph given by $\mathrm{CMod}_{0}=\{r, m\}, \mathrm{CMod}_{1}$ contains operations
$+: r r \rightarrow r,-: r \rightarrow r, 0: 0 \rightarrow r, \cdot: r r \rightarrow r, .: r m \rightarrow r, \oplus: m m \rightarrow m, I: m \rightarrow m, 0^{\oplus}: 0 \rightarrow m$
and CMod_{2} contains the following generating 2-cells :

$x+0 \Rightarrow x$	$\left(\operatorname{ring}_{1}\right)$	$x+(-x) \Rightarrow 0$	$\left(\right.$ ring $\left._{2}\right)$
$-0 \Rightarrow 0$	$\left(\operatorname{ring}_{3}\right)$	$-(-x) \Rightarrow x$	$\left(\right.$ ring $\left._{4}\right)$
$-(x+y) \Rightarrow(-x)+(-y)$	$\left(\operatorname{ring}_{5}\right)$	$x \cdot(y+z) \Rightarrow x \cdot y+x \cdot z$	$\left(\right.$ ring $\left._{6}\right)$
$x \cdot 0 \Rightarrow 0$	$\left(\operatorname{ring}_{7}\right)$	$x \cdot(-y) \Rightarrow-(x \cdot y)$	$\left(\right.$ ring $\left._{8}\right)$
$1 \cdot x \Rightarrow x$	$\left(\operatorname{ring}_{9}\right)$	$a \oplus 0^{\oplus} \Rightarrow a$	$\left(\bmod _{1}\right)$
$x \cdot(y \cdot a) \Rightarrow(x \cdot y) \cdot a$	$\left(\bmod _{2}\right)$	$1 \cdot a \Rightarrow a$	$\left(\bmod _{3}\right)$
$x \cdot a \oplus y \cdot a \Rightarrow(x+y) \cdot a$	$\left(\bmod _{4}\right)$	$x \cdot(a \oplus b) \Rightarrow(x \cdot a) \oplus(y \cdot b)$	$\left(\bmod _{5}\right)$
$a \oplus(r \cdot a) \Rightarrow(1+r) \cdot a$	$\left(\bmod _{6}\right)$	$a \oplus a \Rightarrow(1+1) \cdot a$	$\left(\bmod _{7}\right)$
$x \cdot 0^{\oplus} \Rightarrow 0^{\oplus}$	$\left(\bmod _{8}\right)$	$0 \cdot a \Rightarrow 0^{\oplus}$	$\left(\bmod _{9}\right)$
$I(a) \Rightarrow(-1) \cdot a$	$\left(\bmod _{10}\right)$		

Linear Rewriting Systems

- Let CMod be the cartesian 2-polygraph given by $\mathrm{CMod}_{0}=\{r, m\}, \mathrm{CMod}_{1}$ contains operations
$+: r r \rightarrow r,-: r \rightarrow r, 0: 0 \rightarrow r, \cdot: r r \rightarrow r, .: r m \rightarrow r, \oplus: m m \rightarrow m, I: m \rightarrow m, 0^{\oplus}: 0 \rightarrow m$
and CMod_{2} contains the following generating 2-cells :

$x+0 \Rightarrow x$	$\left(\operatorname{ring}_{1}\right)$	$x+(-x) \Rightarrow 0$	$\left(\right.$ ring $\left._{2}\right)$
$-0 \Rightarrow 0$	$\left(\operatorname{ring}_{3}\right)$	$-(-x) \Rightarrow x$	$\left(\right.$ ring $\left._{4}\right)$
$-(x+y) \Rightarrow(-x)+(-y)$	$\left(\operatorname{ring}_{5}\right)$	$x \cdot(y+z) \Rightarrow x \cdot y+x \cdot z$	$\left(\right.$ ring $\left._{6}\right)$
$x \cdot 0 \Rightarrow 0$	$\left(\operatorname{ring}_{7}\right)$	$x \cdot(-y) \Rightarrow-(x \cdot y)$	$\left(\operatorname{ring}_{8}\right)$
$1 \cdot x \Rightarrow x$	$\left(\operatorname{ring}_{9}\right)$	$a \oplus 0^{\oplus} \Rightarrow a$	$\left(\bmod _{1}\right)$
$x \cdot(y \cdot a) \Rightarrow(x \cdot y) \cdot a$	$\left(\bmod _{2}\right)$	$1 \cdot a \Rightarrow a$	$\left(\bmod _{3}\right)$
$x \cdot a \oplus y \cdot a \Rightarrow(x+y) \cdot a$	$\left(\bmod _{4}\right)$	$x \cdot(a \oplus b) \Rightarrow(x \cdot a) \oplus(y \cdot b)$	$\left(\bmod _{5}\right)$
$a \oplus(r \cdot a) \Rightarrow(1+r) \cdot a$	$\left(\bmod _{6}\right)$	$a \oplus a \Rightarrow(1+1) \cdot a$	$\left(\bmod _{7}\right)$
$x \cdot 0^{\oplus} \Rightarrow 0^{\oplus}$	$\left(\bmod _{8}\right)$	$0 \cdot a \Rightarrow 0^{\oplus}$	$\left(\bmod _{9}\right)$
$I(a) \Rightarrow(-1) \cdot a$	$\left(\bmod _{10}\right)$		

- Theorem [Peterson-Stickel, Hullot] CMod is a presentation of the theory of modules over commutative rings that is confluent modulo AC .

Positive confluence

Let $\mathcal{P}=(P, Q, R, S)$ be an APM with a positivity strategy σ,

Positive confluence

- Let $\mathcal{P}=(P, Q, R, S)$ be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a, b are σ-positive S-rewriting paths and e is a 2-cell of $P_{2}\langle Q\rangle^{\top}$ such that

Positive confluence

- Let $\mathcal{P}=(P, Q, R, S)$ be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a, b are σ-positive S-rewriting paths and e is a 2 -cell of $P_{2}\langle Q\rangle^{\top}$ such that

- It is local if $\ell(a), \ell(e), \ell(b) \leq 1$ and $\ell(a)+\ell(e)+\ell(b)=2$.
- Let $\mathcal{P}=(P, Q, R, S)$ be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a, b are σ-positive S-rewriting paths and e is a 2 -cell of $P_{2}\langle Q\rangle^{\top}$ such that

- It is local if $\ell(a), \ell(e), \ell(b) \leq 1$ and $\ell(a)+\ell(e)+\ell(b)=2$.
- It is σ-confluent if there exists σ-positive S-rewriting paths a^{\prime} and b^{\prime} and a 2 -cell $e^{\prime \prime}$ in $P_{2}\langle Q\rangle^{\top}$ as above.

Positive confluence

- Let $\mathcal{P}=(P, Q, R, S)$ be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a, b are σ-positive S-rewriting paths and e is a 2 -cell of $P_{2}\langle Q\rangle^{\top}$ such that

- It is local if $\ell(a), \ell(e), \ell(b) \leq 1$ and $\ell(a)+\ell(e)+\ell(b)=2$.
- It is σ-confluent if there exists σ-positive S-rewriting paths a^{\prime} and b^{\prime} and a 2 -cell $e^{\prime \prime}$ in $P_{2}\langle Q\rangle^{\top}$ as above.
- \mathcal{P} is positively σ-confluent if, for any S-rewriting step a, there exists :

$$
a_{-} \xrightarrow[a]{ } a_{-}^{\prime}
$$

Positive confluence

- Let $\mathcal{P}=(P, Q, R, S)$ be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a, b are σ-positive S-rewriting paths and e is a 2 -cell of $P_{2}\langle Q\rangle^{\top}$ such that

- It is local if $\ell(a), \ell(e), \ell(b) \leq 1$ and $\ell(a)+\ell(e)+\ell(b)=2$.
- It is σ-confluent if there exists σ-positive S-rewriting paths a^{\prime} and b^{\prime} and a 2 -cell $e^{\prime \prime}$ in $P_{2}\langle Q\rangle^{\top}$ as above.
- \mathcal{P} is positively σ-confluent if, for any S-rewriting step a, there exists :
- a representative $\widetilde{a_{-}} \in \sigma\left(\overline{a_{-}}\right)$of a_{-},

$$
\begin{aligned}
& \tilde{a_{-}} \\
& e{ }_{v} \\
& a_{-} \xrightarrow[a]{\longrightarrow} a_{-}^{\prime}
\end{aligned}
$$

Positive confluence

- Let $\mathcal{P}=(P, Q, R, S)$ be an APM with a positivity strategy σ, a σ-branching is a triple (a, e, b) where a, b are σ-positive S-rewriting paths and e is a 2 -cell of $P_{2}\langle Q\rangle^{\top}$ such that

- It is local if $\ell(a), \ell(e), \ell(b) \leq 1$ and $\ell(a)+\ell(e)+\ell(b)=2$.
- It is σ-confluent if there exists σ-positive S-rewriting paths a^{\prime} and b^{\prime} and a 2 -cell $e^{\prime \prime}$ in $P_{2}\langle Q\rangle^{\top}$ as above.
- \mathcal{P} is positively σ-confluent if, for any S-rewriting step a, there exists :
- a representative $\widetilde{a_{-}} \in \sigma\left(\overline{a_{-}}\right)$of a_{-},
- two σ-positive S-reductions a^{\prime} and b^{\prime} of size at most 1 as follows :

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If \mathcal{P} is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If \mathcal{P} is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
- Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{p} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If \mathcal{P} is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
- Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo :

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{p} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If \mathcal{P} is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
- Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo :

$$
A\left[a_{+}\right] \stackrel{a}{\longleftarrow} A\left[a_{-}\right] \xrightarrow{a} A\left[a_{+}\right]
$$

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If \mathcal{P} is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
- Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo:

$$
A\left[a_{+}\right] \stackrel{a}{\longleftarrow} A\left[a_{-}\right] \stackrel{a}{\longleftrightarrow} A\left[a_{+}\right] \quad A\left[a_{+}\right] \stackrel{a}{\longleftrightarrow} A\left[a_{-}\right]=A\left[A^{\prime}\left[b_{-}\right]\right] \xrightarrow{b} A\left[A^{\prime}\left[b_{+}\right]\right]
$$

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If \mathcal{P} is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
- Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo:

$$
\begin{aligned}
& A\left[a_{+}\right] \stackrel{a}{\longleftrightarrow} A\left[a_{-}\right] \xrightarrow{a} A\left[a_{+}\right] \quad A\left[a_{+}\right] \stackrel{a}{\longleftrightarrow} A\left[a_{-}\right]=A\left[A^{\prime}\left[b_{-}\right]\right] \xrightarrow{\text { Trivial }} \begin{array}{l}
\text { Inclusion independant }
\end{array} \\
& B\left[a_{-}, b_{-}\right] \xrightarrow{B\left[a, b_{-}\right]} B\left[A^{\prime}\left[b_{+}\right]\right] \\
& \quad \| \downarrow \\
& B\left[a_{-}, b_{-}\right] \\
& \text {Urthogonal }
\end{aligned}
$$

Critical branching lemma modulo

- An APM $\mathcal{P}=(P, Q, R, S)$ with a positive strategy σ is
- terminating is there is no infinite σ-positive ${ }_{\rho} R_{P}$-rewriting sequence.
- quasi-terminating if any infinite σ-positive ${ }_{P} R_{P}$-rewriting sequence contains infinitely many times the same 1-cell,

- Theorem (Newman Lemma Modulo) [Huet, Chenavier - D. - Malbos] If \mathcal{P} is (quasi-)terminating, local σ-confluence modulo is equivalent to σ-confluence modulo.
- Proof : extension of Huet's induction principle, using a distance on the quasi-normal forms.
- Classification of local σ-branchings modulo:

$$
\begin{array}{cc}
A\left[a_{+}\right] \stackrel{a}{\longleftrightarrow} A\left[a_{-}\right] \xrightarrow{a} A\left[a_{+}\right] & A\left[a_{+}\right] \stackrel{a}{\longleftrightarrow} A\left[a_{-}\right]=A\left[A^{\prime}\left[b_{-}\right]\right] \xrightarrow{b} A\left[A^{\prime}\left[b_{+}\right]\right] \\
\text {Trivial } & \text { Inclusion independant } \\
B\left[a_{-}, b_{-}\right] \xrightarrow{B\left[a_{,} b_{-}\right]} & B\left[a_{+}, b_{-}\right]
\end{array} \quad B\left[a_{-}, e_{-}\right] \xrightarrow{B\left[a, e_{-}\right]} B\left[a_{+}, e_{-}\right] .
$$

Critical branching lemma modulo

- The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.

Critical branching lemma modulo

- The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.
- Critical branchings modulo : minimal non-orthogonal branchings for the order relation $(a, e, b) \sqsubseteq(A[a], A[e], A[b])$, where A is a ground context.

Critical branching lemma modulo

- The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.
- Critical branchings modulo : minimal non-orthogonal branchings for the order relation $(a, e, b) \sqsubseteq(A[a], A[e], A[b])$, where A is a ground context.
- Theorem (CBL modulo) [Chenavier - D. - Malbos] Let (P, Q, R, S) be a quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally σ-confluent modulo if and only if :
a_{0}) any critical σ-branching modulo (a, b) made of S-rewriting steps is σ-confluent modulo.

\mathbf{b}_{0}) any critical σ-branching modulo (a, e), with a is an S-rewriting step and e is a 2 -cell in $P_{\mathbf{2}}\langle Q\rangle^{\top}$ of length 1 , is σ-confluent modulo.

Critical branching lemma modulo

- The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo.
- Critical branchings modulo : minimal non-orthogonal branchings for the order relation $(a, e, b) \sqsubseteq(A[a], A[e], A[b])$, where A is a ground context.
- Theorem (CBL modulo) [Chenavier - D. - Malbos] Let (P, Q, R, S) be a quasi-terminating and positively σ-confluent APM with a positive strategy σ. It locally σ-confluent modulo if and only if :
a_{0}) any critical σ-branching modulo (a, b) made of S-rewriting steps is σ-confluent modulo.

b_{0}) any critical σ-branching modulo (a, e), with a is an S-rewriting step and e is a 2 -cell in $P_{\mathbf{2}}\langle Q\rangle^{\top}$ of length 1 , is σ-confluent modulo.

- When $P_{\mathbf{2}\langle Q\rangle} R \subseteq S$, property $\left.\mathbf{b}_{0}\right)$ is always satisfied.

III. Algebraic critical branching lemma

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient.

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.
- Example: With $P=$ Mon, $Q=\{s, t\}, R=\{\alpha: \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$ and σ the full strategy, the AIRS is

$$
\langle s, t \mid s t s \rightarrow t s t\rangle \quad s=>|, \quad t=|>
$$

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.
- Example: With $P=$ Mon, $Q=\{s, t\}, R=\{\alpha: \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$ and σ the full strategy, the AIRS is

$$
\langle s, t \mid s t s \rightarrow t s t\rangle \quad s=\langle\mid, \quad t=1\rangle
$$

- The critical branchings of an algebraic rewriting systems are the projections of the critical branchings of the form \mathbf{a}_{0}).

Algebraic rewriting systems and critical branching lemma

- Confluence modulo diagrams of an APM :

- Algebraic rewriting system (AIRS) : rewriting system given by the red reductions in the quotient. It is the same for each choice of S.
- Example: With $P=$ Mon, $Q=\{s, t\}, R=\{\alpha: \mu(\mu(s, t), s) \Rightarrow \mu(t, \mu(s, t))\}$ and σ the full strategy, the AIRS is

$$
\langle s, t \mid s t s \rightarrow t s t\rangle \quad s=>|, \quad t=1\rangle
$$

- The critical branchings of an algebraic rewriting systems are the projections of the critical branchings of the form a_{0}).
- Theorem [Chenavier - D. - Malbos] Let $\mathcal{P}=(P, Q, R, S)$ be a quasi-terminating and positively σ-confluent APM, and \mathcal{A} be an ARS on \mathcal{P}. Then \mathcal{A} is locally confluent if and only if its critical branchings are confluent.

Examples

- For string rewriting systems :

With the full strategy $\left(\sigma(\bar{f})=\pi^{-1}(\bar{f})\right)$, orthogonal are confluent without quasi-termination.

Examples

- For string rewriting systems:
- With the full strategy $\left(\sigma(\bar{f})=\pi^{-1}(\bar{f})\right)$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
- Termination is a necessary assumption to ensure confluence of orthogonal branchings.
- ${ }_{P} R_{P}$ quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
- The positive σ-confluence implies the following factorization property :

Examples

- For string rewriting systems:
- With the full strategy $\left(\sigma(\bar{f})=\pi^{-1}(\bar{f})\right)$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
- Termination is a necessary assumption to ensure confluence of orthogonal branchings.
- ${ }_{P} R_{P}$ quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
- The positive σ-confluence implies the following factorization property :

- Questions :

Examples

- For string rewriting systems:
- With the full strategy $\left(\sigma(\bar{f})=\pi^{-1}(\bar{f})\right)$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
- Termination is a necessary assumption to ensure confluence of orthogonal branchings.
$\Rightarrow{ }_{P} R_{P}$ quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
- The positive σ-confluence implies the following factorization property :

- Questions :
- Is the positive σ-confluence always satisfied in the linear setting ?

Examples

- For string rewriting systems:
- With the full strategy $\left(\sigma(\bar{f})=\pi^{-1}(\bar{f})\right)$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems :
- Termination is a necessary assumption to ensure confluence of orthogonal branchings.
- ${ }_{P} R_{P}$ quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
- The positive σ-confluence implies the following factorization property :

- Questions :
- Is the positive σ-confluence always satisfied in the linear setting ?
- How does the critical branching lemma translates if we change the positive strategy ?

Examples

- For string rewriting systems:
- With the full strategy $\left(\sigma(\bar{f})=\pi^{-\mathbf{1}}(\bar{f})\right)$, orthogonal are confluent without quasi-termination.
- For linear rewriting systems:
- Termination is a necessary assumption to ensure confluence of orthogonal branchings.
- ${ }_{P} R_{P}$ quasi-terminating implies that the quotient AIRS is (quasi)-terminating.
- The positive σ-confluence implies the following factorization property :

- Questions :
- Is the positive σ-confluence always satisfied in the linear setting ?
- How does the critical branching lemma translates if we change the positive strategy ?
- Conclusion :
- This work suggests new tools for rewriting in various algebraic structures.
- Need a better understanding of how to choose strategies, and ensure positive confluence in general.
- Develop a critical branching lemma for various algebraic contexts : groups, differential algebras, operads, higher-dimensional categories.

Thank you!

